Article
Keywords:
exchange ring; ideal; related comparability
Summary:
In this paper, we introduce related comparability for exchange ideals. Let $I$ be an exchange ideal of a ring $R$. If $I$ satisfies related comparability, then for any regular matrix $A\in M_n(I)$, there exist left invertible $U_1,U_2\in M_n(R)$ and right invertible $V_1,V_2\in M_n(R)$ such that $U_1V_1AU_2V_2= \operatorname{diag}(e_1,\cdots ,e_n)$ for idempotents $e_1,\cdots ,e_n\in I$.
References:
[1] P. Ara:
Stability properties of exchange rings. Birkenmeier G. F. (ed.) et al., International symposium on ring theory. Boston, MA: Birkhäuser. Trends in Mathematics, 2001, pp. 23–42.
MR 1851191 |
Zbl 0979.16001
[2] P. Ara, K. R. Goodearl, K. C. O’Meara and E. Pardo:
Diagonalization of matrices over regular rings. Linear Algebra Appl. 265 (1997), 147–163.
MR 1466896
[3] P. Ara, K. R. Goodearl, K. C. O’Meara and E. Pardo:
Separative cancellation for projective modules over exchange rings. Israel J. Math. 105 (1998), 105–137.
DOI 10.1007/BF02780325 |
MR 1639739
[10] K. R. Goodearl:
Von Neumann Regular Rings. Pitman, London, San Francisco, Melbourne, 1979, second ed., Krieger, Malabar, Fl., 1991.
MR 0533669 |
Zbl 0749.16001