Article
Keywords:
Latin $p$-dimensional cube; Latin hypercube; Latin squares; orthogonal
Summary:
We give a construction of $p$ orthogonal Latin $p$-dimensional cubes (or Latin hypercubes) of order $n$ for every natural number $n\ne 2,6$ and $p \ge 2$. Our result generalizes the well known result about orthogonal Latin squares published in 1960 by R. C. Bose, S. S. Shikhande and E. T. Parker.
References:
[1] R. C. Bose, S. S. Shrikhande and E. T. Parker:
Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Canad. J. Math. 12 (1960), 189–203.
DOI 10.4153/CJM-1960-016-5 |
MR 0122729
[2] J. Dénes and A. D. Keedwel:
Latin Squares and Their Applications. Akadémiai Kiadó, Budapest, 1974.
MR 0351850
[4] M. Trenkler:
Magic $p$-dimensional cubes of order $n \lnot \equiv 2\hspace{4.44443pt}(\@mod \; 4)$. Acta Arithmetica 92 (2000), 189–194.
MR 1750318