Article
Keywords:
clone; hyperoperation; hyperalgebra; hyperclone
Summary:
In this paper the structure of the interval $[O_A, Hp_A]$ in the lattice of partial hyperclones is determined, where $O_A$ is the clone of all total operations and $Hp_A$ is the clone of all partial hyperoperations on $A$.
References:
[1] S. Burris and H. P. Sankappanavar:
A Course in Universal Algebra. Graduate Texts in Mathematics, Vol 78. Springer-Verlag, New York-Heidelberg-Berlin, 1981.
MR 0648287
[2] Th. Drescher and R. Pöschel:
Multiclones and relations. Multi-Val. Logic 7 (2001), 313–337.
MR 1901118
[3] L. Haddad, I. G. Rosenberg and D. Schweigert:
A maximal partial clone and a Slupecki-type criterion. Acta Sci. Math. 54 (1990), 89–98.
MR 1073422
[4] R. Pöschel and L. A. Kalužnin:
Funktionen und Relationenalgebren. Ein Kapitel der diskreten Mathematik. Deutscher Verlag der Wiss., Berlin, 1979 (in German); Birkhäuser Verlag, Basel u. Stuttgart (Math. Reihe Bd. 67).
MR 0543839
[5] I. G. Rosenberg: An algebraic aproach to hyperalgebras. Proceedings of 26th ISMVL, Santiago de Compostela, May 28–31, 1996, IEEE, 1996, pp. 203–207.
[6] I. G. Rosenberg:
Multiple-valued hyperstructures. Proceedings of 28th ISMVL, May 27–29, 1998, IEEE, 1998, pp. 326–333.
MR 1676973