[2] L. Boccardo, P. Drábek, D. Giachetti and M. Kučera:
Generalization of the Fredholm alternative for nonlinear differential operators. Nonlin. Anal. 10 (1986), 1083–1103.
DOI 10.1016/0362-546X(86)90091-X |
MR 0857742
[3] H. Brezis:
Operateurs Maximaux Monotones. North-Holland, Amsterdam, 1973.
Zbl 0252.47055
[7] H. Dang and S. F. Oppenheimer:
Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198 (1996), 35–48.
DOI 10.1006/jmaa.1996.0066 |
MR 1373525
[8] M. Del Pino, M. Elgueta and R. Manasevich:
A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u^{\prime }|^{p-2} u^{\prime })^{\prime } + f(t,u)=0$, $u(0)=u(T)=0$. J. Differential Equations 80 (1989), 1–13.
DOI 10.1016/0022-0396(89)90093-4 |
MR 1003248
[9] P. Drábek:
Solvability of boundary value problems with homogeneous ordinary differential operator. Rend. Ist. Mat. Univ. Trieste 8 (1986), 105–124.
MR 0928322
[10] L. Erbe and W. Krawcewicz:
Nonlinear boundary value problems for differential inclusions $y^{\prime \prime }\in F(t,y,y^{\prime })$. Ann. Pol. Math. 54 (1991), 195–226.
DOI 10.4064/ap-54-3-195-226 |
MR 1114171
[11] L. Erbe and W. Krawcewicz:
Boundary value problems differential inclusions. Lect. Notes Pure Appl. Math., No. 127, Marcel-Dekker, New York, 1990, pp. 115–135.
MR 1096748
[12] L. Erbe and W. Krawcewicz:
Existence of solutions to boundary value problems for impulsive second order differential inclusions. Rocky Mountain J. Math. 22 (1992), 519–539.
DOI 10.1216/rmjm/1181072746 |
MR 1180717
[13] L. Erbe, W. Krawcewicz and G. Peschke:
Bifurcation of a parametrized family of boundary value problems for second order differential inclusions. Ann. Mat. Pura Appl. 166 (1993), 169–195.
DOI 10.1007/BF01765848 |
MR 1271418
[14] C. Fabry and D. Fayyad:
Periodic solutions of second order differential equations with a $p$-Laplacian and asymmetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227.
MR 1310080
[15] M. Frigon:
Application de la theorie de la transversalite topologique a des problemes non lineaires pour des equations differentielles ordinaires. Dissertationes Math. 269 (1990).
MR 1075674 |
Zbl 0728.34017
[16] M. Frigon:
Theoremes d’existence des solutions d’inclusions differentielle. In: Topological Methods in Diferential Equations and Inclusions. NATO ASI Series, Section C, Vol. 472, Kluwer, Dordrecht, 1995, pp. 51–87.
MR 1368670
[17] M. Frigon and A. Granas:
Problemes aux limites pour des inclusions differentielles de type semi-continues inferieurement. Rivista Mat. Univ. Parma 17 (1991), 87–97.
MR 1174938
[18] S. Fučík, J. Nečas, J. Souček and V. Souček:
Spectral Analysis of Nonlinear Operators. Lecture Notes in Math., Vol. 346. Springer-Verlag, Berlin, 1973.
MR 0467421
[19] Z. Guo: Boundary value problems of a class of quasilinear differential equations. Diff. Intergral Eqns 6 (1993), 705–719.
[20] N. Halidias and N. S. Papageorgiou:
Existence and relaxation results for nonlinear second order multivalued boundary value problems in $\mathbb{R}^N$. J. Diff. Eqns 147 (1998), 123–154.
DOI 10.1006/jdeq.1998.3439 |
MR 1632661
[21] N. Halidias and N. S. Papageorgiou:
Existence of solutions for quasilinear second order differential inclusions with nonlinear boundary conditions. J. Comput. Appl. Math. 113 (2000), 51–64.
DOI 10.1016/S0377-0427(99)00243-5 |
MR 1735812
[22] P. Hartman:
Ordinary Differential Equations, 2nd Edition. Birkhauser-Verlag, Boston-Basel-Stuttgart, 1982.
MR 0658490
[23] S. Hu and N. S. Papageorgiou:
Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, 1997.
MR 1485775
[24] S. Hu and N. S. Papageorgiou:
Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht, 2000.
MR 1741926
[25] D. Kandilakis and N. S. Papageorgiou:
Existence theorems for nonlinear boundary value problems for second order differential inclusions. J. Differential Equations 132 (1996), 107–125.
DOI 10.1006/jdeq.1996.0173 |
MR 1418502
[26] E. Klein and A. Thompson:
Theory of Correspondences. Wiley, New York, 1984.
MR 0752692
[27] S. Th. Kyritsi, N. Matzakos and N. S. Papageorgiou:
Periodic problems for strongly nonlinear second order differential inclusions. J. Differential Equations 183 (2002), 279–302.
DOI 10.1006/jdeq.2001.4110 |
MR 1919781
[28] R. Manasevich and J. Mawhin:
Periodic solutions for nonlinear systems with $p$-Laplacian-like operators. J. Differential Equations 145 (1998), 367–393.
DOI 10.1006/jdeq.1998.3425 |
MR 1621038
[29] R. Manasevich and J. Mawhin:
Boundary value problems for nonlinear perturbations of vector $p$-Laplacian-like operators. J. Korean Math. Soc. 37 (2000), 665–685.
MR 1783579
[30] M. Marcus and V. Mizel:
Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45 (1972), 294–320.
DOI 10.1007/BF00251378 |
MR 0338765
[31 J. Mawhin and M. Willem]
Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York, 1989.
MR 0982267 |
Zbl 0676.58017
[32] Z. Naniewicz and P. Panagiotopoulos:
Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York, 1994.
MR 1304257
[34] T. Pruszko:
Some applications of the topological deggre theory to multivalued boundary value problems. Dissertationes Math. 229 (1984).
MR 0741752
[36] E. Zeidler:
Nonlinear Functional Analysis and its Applications II. Springer-Verlag, New York, 1990.
MR 0816732 |
Zbl 0684.47029