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Abstract. In this paper we study two boundary value problems for second order strongly
nonlinear differential inclusions involving a maximal monotone term. The first is a vector
problem with Dirichlet boundary conditions and a nonlinear differential operator of the
form x 7→ a(x, x′)′. In this problem the maximal monotone term is required to be defined
everywhere in the state space " N . The second problem is a scalar problem with periodic
boundary conditions and a differential operator of the form x 7→ (a(x)x′)′. In this case the
maximal monotone term need not be defined everywhere, incorporating into our framework
differential variational inequalities. Using techniques from multivalued analysis and from
nonlinear analysis, we prove the existence of solutions for both problems under convexity
and nonconvexity conditions on the multivalued right-hand side.

Keywords: measurable multifunction, usc and lsc multifunction, maximal monotone op-
erator, pseudomonotone operator, generalized pseudomonotone operator, coercive operator,
surjective operator, eigenvalue, eigenfunction, Rayleigh quotient, p-Laplacian, Yosida ap-
proximation, periodic problem.
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Introduction

The purpose of this paper is to study boundary value problems for a large class of

nonlinear second order differential inclusions. In the last decade there have been sev-

eral papers dealing with boundary value problems for differential inclusions. We men-

tion the papers of Erbe-Krawcewicz [10], [11], [12], Erbe-Krawcewicz-Peschke [13],

Frigon [15], [16], Frigon-Granas [17], Halidias-Papageorgiou [20], [21], Kandilakis-

Papageorgiou [25] and Pruszko [34]. All these papers (with the exception of Halidias-

Papageorgiou [21]) deal with the semilinear problem, i.e. the differential operator is

x 7→ x′′ and there is no multivalued maximal monotone operator present in the
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equation (as it is here, see problems (1), (2) below). Of the above mentioned papers,

Frigon [15], [16] and Frigon-Granas [17] study scalar problems with certain Sturm-

Liouville type boundary conditions and employ the method of upper and lower so-

lutions appropriately modified to fit the set-valued character of the problem. The

other papers examine the vector problem and in Erbe-Krawcewicz [10], [11], Halidias-

Papageorgiou [20], [21] and Kandilakis-Papageorgiou [25], the authors use general

nonlinear boundary conditions which include as special cases the classical Dirich-

let, Neumann and periodic boundary conditions. In addition our work is related to

the recent papers which examine single-valued differential equations involving the

one-dimensional p-Laplacian. We mention the work of Boccardo-Drábek-Giachetti-

Kučera [2], Dang-Oppenheimer [7], Del Pino-Elgueta-Manasevich [8], Drábek [9],

Fabry-Fayyad [14], Guo [19], Manasevich-Mawhin [28] and the references therein.

All these papers (with the exception of Manasevich-Mawhin [28]) study scalar prob-

lems. In Boccardo-Drábek-Giachetti-Kučera [2], Del Pino-Elgueta-Manasevich [8],

the boundary conditions are Dirichlet. In Fabry-Fayyad [14] and Manasevich-Maw-

hin [28] the authors investigate the periodic problem, while Guo [19] deals with both

the periodic and the Neumann problems and finally Dang-Oppenheimer [7] examine

all three problems (Dirichlet, Neumann and periodic). It should be mentioned here

that Dang-Oppenheimer [7] and Manasevich-Mawhin [28] use a general p-Laplacian-

like differential operator which is not necessarily homogeneous and has no growth

restrictions. However, their operator is independent of x and depends only on x′ and

in their problem there is no multivalued maximal monotone operator (so they can

not treat variational inequalities).

In this paper we study the following multivalued boundary value problem:

(1)

{
(a(x(t), x′(t)))′ −A(x(t)) − F (t, x(t), x′(t)) 3 0 a.e. on T = [0, b],

x(0) = x(b) = 0.

}

Here A : # N → 2 $ N \ {∅} is a maximal monotone map and a : # N × # N →
2 $ N \ {∅}, F : T × # N × # N → 2 $ N \ {∅} are set-valued functions. The presence
of the operator A in (1) incorporates into our framework second order systems with

an autonomous, convex, in general nonsmooth potential. Semilinear such systems

with smooth (but possibly time-varying and nonconvex) potential can be found in

the book of Mawhin-Willem [31].

By a solution of (1) we mean a function x ∈ W 1,p
0 (T, # N ) such that there exist

f ∈ Lq(T, # N ) with f(t) ∈ F (t, x(t), x′(t)) a.e. on T and g ∈W 1,q(T, # N )
(

1
p + 1

q = 1
)

with g(t) ∈ a(x(t), x′(t)) a.e. on T such that g′(t)− f(t) ∈ A(x(t)) a.e. on T .
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In Section 4 we deal with the following scalar periodic problem:

(2)

{
(a(x(t))x′(t))′ ∈ A(x(t)) + F (t, x(t), x′(t)) a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b).

}

Now a is single-valued, A : # → 2 $ is a maximal monotone map and in contrast
to problem (1), domA = {x ∈ # : A(x) 6= ∅} 6= # . So our formulation incorporates
in particular second order differential inequalities. Note that because the problem is

scalar, A = ∂ϕ with ϕ : # → # = # ∪ {+∞} proper, convex and lower semicontin-
uous (see for example Brezis [3, p. 43] or Hu-Papageorgiou [23, p. 348]). Vectorial

versions of problem (2), with the differential operator being x 7→ a(x′)′ not necessar-
ily homogeneous and with no growth restrictions on a(·), can be found in the very
recent work of Kyritsi-Matzakos-Papageorgiou [27].

By a solution of (2) we mean a function x ∈ C1(T ) such that x(0) = x(b), x′(0) =
x′(b) and there exists f ∈ Lq(T, # N ) with f(t) ∈ F (t, x(t), x′(t)) for which we have
(a(x(t))x′(t))′ − f(t) ∈ A(x(t)) a.e. on T .
In Section 2 we provide the mathematical background needed to follow the argu-

ments of this paper. In Section 3 we study problem (1) and finally in Section 4 we

deal with problem (2).

2. Mathematical preliminaries

Our approach will be based on notions and results from multivalued analysis and

the theory of nonlinear operators of monotone type. So for the convenience of the

reader, in this section we recall some basic definitions and facts from these areas.

Our main sources are the books of Klein-Thompson [26], Hu-Papageorgiou [23] and

Zeidler [36] and the paper of Browder-Hess [4] for pseudomonotone operators.

Let (Ω,Σ) be a measurable space and X a separable Banach space. We introduce
the following notations:

Pf(c)(X) = {A ⊆ X : nonempty closed (and convex)} and
P(w)k(c)(X) = {A ⊆ X nonempty, (weakly-) compact (and convex)}.

A multifunction F : Ω → Pf (X) is said to be measurable, if for all x ∈ X , ω 7→
d(x, F (ω)) is measurable. A multifunction F : Ω → 2X \ {∅} is said to be graph
measurable, if GrF = {(ω, x) ∈ Ω ×X : x ∈ F (ω)} ∈ Σ × B(X), with B(X) being
the Borel σ-field ofX . For Pf (X)-valued multifunctions, measurability implies graph
measurability and the converse is true if Σ is complete (i.e. Σ = Σ̂ = the universal
σ-field; this is the case if for example there exists a σ-finite measure µ on Ω with
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respect to which Σ is complete, see Cohn [6]). Let µ be a finite measure on (Ω,Σ).
For a multifunction F : Ω → 2X \ {∅} and 1 6 p 6 ∞, we define Sp

F = {f ∈
Lp(Ω, X) : f(ω) ∈ F (ω) for µ-a.a. ω ∈ Ω}. This set may be empty. For a graph
measurable multifunction it is nonempty if and only if inf{‖x‖ : x ∈ F (ω) 6 ϕ(ω)}
for µ-a.a. ω ∈ Ω, with ϕ ∈ Lp(Ω). If {An}n>1 ⊆ 2X \ {∅}, then we define

w- lim sup
n→∞

An = {x ∈ X : x = w- limxnk
, xnk

∈ Ank
, n1 < . . . < nk < . . .}.

Here w- stands for the weak topology on X . So w- lim sup
n→∞

An is the set of all weak

subsequential limits of all sequences {xn}n>1 with xn ∈ An, n > 1. Moreover, if
C ⊆ X , then convC denotes the closed convex hull of C.
In our analysis we shall need the Yankov-von Neumann-Aumann selection theorem.

For the convenience of the reader, we recall a version of this result that we shall use

in the sequel. For the general form of the theorem and a proof of it we refer to

Hu-Papageorgiou [23, p. 158], Klein-Thompson [26, p. 166] or Wagner [35].

Theorem A. If (Ω,Σ, µ) is a complete, σ-finite measure space, X is a separable
complete metric space and F : Ω → 2X \ {∅} is a multifunction such that GrF =
{(ω, x) ∈ Ω × X : x ∈ F (ω)} ∈ Σ × B(X) (i.e. F is graph measurable), then there
exists a Σ-measurable function f : Ω → X such that f(ω) ∈ F (ω) for all ω ∈ Ω.

Another auxiliary result that will be useful in our analysis is the next Proposi-

tion which gives information about the pointwise behavior of a weakly convergent

sequence in the Lebesgue-Bochner space Lp(Ω, X), 1 6 p < ∞. For a proof of this
result, we refer to the paper of Papageorgiou [33] or the book of Hu-Papageorgiou [23,

p. 694].

Proposition B. If (Ω,Σ, µ) is a finite measure space, X is a Banach space,
{fn, f}n>1 ⊆ Lp(Ω, X), 1 6 p <∞, fn

w→ f in Lp(Ω, X) and for µ-almost all ω ∈ Ω
there exists a nonempty, weakly compact set G(ω) such that fn(ω) ∈ G(ω) for all
n > 1, then f(ω) ∈ conv[w- lim sup

n→∞
{fn(ω)}] µ-a.e. on Ω.

Let Y , Z be Hausdorff topological spaces. A multifunction G : Y → 2Z\{∅} is said
to be lower semicontinuous (lsc) (resp. upper semicontinuous (usc)), if for all C ⊆ Z

closed, the set G+(C) = {y ∈ Y : G(y) ⊆ C} (resp. G−(C) = {y ∈ Y : G(y) ∩ C 6=
∅}) is closed. An usc multifunction has closed graph in Y × Z, while the converse

is true if G is locally compact (i.e. for every y ∈ Y there exists a neighborhood U

of y such that G(U) is compact in Z). Also a Pk(Z)-valued multifunction G which is
usc, maps compact sets of Y into compact sets of Z. A multifunction which is both
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usc and lsc, is said to be continuous (or sometimes Vietoris continuous). If Z is a

metric space and A,C ⊆ Z, we set h∗(A,C) = sup[d(a, C) : a ∈ A] (the excess of A
over C) and h(A,C) = max{h∗(A,C), h∗(C,A)} (the Hausdorff distance between A
and C). We know that h(·, ·) is a metric on Pf (Z) and if Z is a complete metric space,
then so is (Pf (Z), h). A multifunction G : Y → Pf (Z) which is continuous into the
metric space (Pf (Z), h) is said to be h-continuous. For Pk(Z)-valued multifunctions
continuity and h-continuity are equivalent notions. Moreover, if G : Y → Pk(Z),
then G is lsc if and only if for every y0 ∈ Y the function y → h∗(G(y0), G(y)) is
continuous.

Next let X be a reflexive Banach space and X∗ its topological dual. A map

A : D ⊆ X → 2X∗
is said to be monotone, if for all x∗ ∈ A(x), y∗ ∈ A(y), we have

(x∗−y∗, x−y) > 0 (here by (·, ·) we denote the duality brackets for the pair (X,X∗)).
If (x∗− y∗, x− y) = 0 implies x = y, we say that A is strictly monotone. The map A

is said to be maximal monotone, if (x∗ − y∗, x − y) > 0 for all x ∈ D, x∗ ∈ A(x),
imply y ∈ D and y∗ ∈ A(y), i.e. the graph of A is maximal with respect to inclusion
among the graphs of all monotone maps. It is easy to see that the graph of a maximal

monotone map A is sequentially closed in X×X∗
w and in Xw ×X∗ (here by Xw and

X∗
w we denote the spaces X and X

∗ furnished with their respective weak topologies).

A monotone map is locally bounded at every point in the interior of its domain D

(recall D = {x ∈ X : A(x) 6= ∅}) and if A is maximal monotone, then A
∣∣
int D

is

usc into X∗ furnished with the weak topology. A map A : D ⊆ X → 2X∗
is said

to be coercive, if D is bounded or D is unbounded and inf{‖x∗‖ : x∗ ∈ A(x)} → ∞
as ‖x‖ → ∞. A maximal monotone, coercive map is surjective. If A is monotone,
D = X and for all x, y ∈ X , λ 7→ A(x + λy) is usc from [0, 1] into X∗

w∗ (= X∗ with

the w∗-topology), then A is maximal monotone.

Let X = H be a Hilbert space and A : D ⊆ H → 2H a maximal monotone

operator. We know that for every x ∈ D, A(x) is nonempty, closed and convex. So
the set A(x) contains an element of minimum norm (the projection of the origin on
the set A(x)). This unique element is denoted by A0(x). We have A0(x) ∈ A(x) and
‖A0(x)‖ = inf[‖x∗‖ : x∗ ∈ A(x)]. Also the set D is convex. Now for λ > 0 we define
the following well-known operators:

Jλ = (I + λA)−1 (the resolvent of A)

and

Aλ =
1
λ

(I − Jλ) (the Yosida approximation of A).

Recall that according to Minty’s theorem (see for example Brezis [3, p. 23]), A is

maximal monotone if and only if for every λ > 0 (equivalently for some λ > 0),
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we have R(I + λA) = H , i.e. the operator I + λA is surjective. So we see that

the operators Jλ and Aλ are defined on all of H and it is easy to see that they are

single-valued. Several properties of Jλ and Aλ are collected in the proposition that

follows (see Brezis [3, pp. 23 and 28] and Hu-Papageorgiou [23, p. 325]).

Proposition C. If A : D ⊆ H → 2H is a maximal monotone operator, then for

every λ > 0 we have
(a) Jλ is nonexpansive (i.e. Lipschitz continuous with constant 1);
(b) Aλ(x) ∈ A(Jλ(x)) for all x ∈ H ;
(c) Aλ is monotone and Lipschitz continuous with constant 1/λ (therefore Aλ is

maximal monotone);

(d) ‖Aλ(x)‖ 6 ‖A0(x)‖ and Aλ(x) → A0(x) as λ→ 0 for all x ∈ D;
(e) D is convex and Jλ(x) → proj(x;D) as λ→ 0 for all x ∈ H .

Here proj(x;D) denotes the metric projection of x on the closed, convex set D. So
according to (e) Jλ(·) can be viewed as an approximation of the identity operator.
Indeed note that if D = H , then Jλ(x) → x for all x ∈ H .
By Γ0( # N ) we denote the functions ϕ : # N → # = # ∪ {+∞} which are convex,

lower semicontinuous and proper (i.e. not identically +∞). By ∂ϕ we denote the
subdifferential of ϕ, i.e.

∂ϕ(x) = {x∗ ∈ # N : (x∗, y − x) $ N 6 ϕ(y)− ϕ(x) for all y ∈ # N }.

It is well-known that ∂ϕ : # N → 2 $ N

is maximal monotone. Moreover, if ϕ is

continuous, then ∂ϕ(x) 6= ∅ for all x ∈ # N . In addition ϕ is locally Lipschitz.

For locally Lipschitz (not necessarily convex functions), we have an extension of the

notion of subdifferential, which is due to Clarke [5]. Namely let ϕ : X → # be locally
Lipschitz. We introduce the generalized directional derivative

ϕ0(x;h) = lim sup
x′→x
λ↓0

ϕ(x′ + λh)− ϕ(x′)
λ

.

The function h → ϕ0(x;h) is continuous, sublinear. The Clarke subdifferential
of ϕ at x is defined by

∂ϕ(x) = {x∗ ∈ X∗ : (x∗, h) 6 ϕ0(x;h) for all h ∈ # N }.

If ϕ is also convex, the two subdifferentials coincide and for this reason we use the

same notation. If ϕ ∈ C1(X), then ∂ϕ(x) = {ϕ′(x)}. The Clarke subdifferential is
monotone if and only if the function is convex.
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Given ϕ ∈ Γ0( # N ), the Moreau-Yosida approximation (or regularization) of ϕ is
defined by

ϕλ(x) = inf
[
ϕ(y) +

1
2λ
‖x− y‖2 : y ∈ # N

]
for all x ∈ # N , λ > 0.

The function ϕλ is convex, differentiable and

(∂ϕ)λ = ∂ϕλ for all λ > 0.

Moreover, ϕλ ↑ ϕ as λ ↓ 0.
An operator A : X → 2X∗

is said to be pseudomonotone, if

(a) for every x ∈ X , A(x) ∈ Pwkc(X∗),
(b) A is usc from every finite dimensional subspace Z of X into X∗

w and

(c) if xn
w→ x, x∗n ∈ A(xn) and lim(x∗n, xn − x) 6 0, then for every y ∈ X , there

exists x∗(y) ∈ A(x) such that (x∗(y), x− y) 6 lim(x∗n, xn − y).
If A is bounded (i.e. maps bounded sets into bounded sets) and satisfies condi-

tion (c), then it satisfies condition (b) too. An operator A : X → 2X∗
is said to be

generalized pseudomonotone, if for all x∗n ∈ A(xn), n > 1, which satisfy xn
w→ x in X ,

x∗n
w→ x∗ in X∗ and lim(x∗n, xn − x) 6 0, we have x∗ ∈ A(x) and (x∗n, xn) → (x∗, x).
The following theorem relates the notions of maximal monotonicity, pseudomono-

tonicity and generalized pseudomonotonicity. For details we refer to the paper of

Browder-Hess [4] and the book of Hu-Papageorgiou [23, Section III.6].

Theorem D. If X is a reflexive Banach space and A : X → 2X∗
, then

(a) if A is maximal monotone, it is also generalized pseudomonotone;

(b) if A is pseudomonotone, it is also generalized pseudomonotone;

(c) if A is generalized pseudomonotone, bounded and for every x ∈ X we have

A(x) ∈ Pwkc(X∗), then A is pseudomonotone;
(d) if A is pseudomonotone and coercive, then it is surjective;

(e) the sum of pseudomonotone maps is pseudomonotone too.

Let Y , Z be Banach spaces and K : Y → Z. We say that

(a) K is completely continuous, if yn
w→ y in Y implies K(yn) → K(y) in Z, and

(b) K is compact, if it is continuous and maps bounded sets into relatively compact

sets.

In general these two notions are distinct. However, if Y is reflexive, then complete

continuity implies compactness. Moreover, if Y is reflexive and K is linear, then the

two notions are equivalent. Also a multivalued map F : Y → 2Z \ {∅} is said to be
compact, if it is usc and maps bounded sets in Y into relatively compact sets in Z.
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In Section 4 we will need the following multivalued generalization of the classical

Leray-Schauder alternative principle, which is due to Bader [1]. Let X , Y be Ba-

nach spaces, G : X → Pwkc(Y ) be usc from X into Yw, K : Y → X be completely

continuous and Φ = K ◦G.

Proposition 1. If X , Y , Φ are as above and Φ is compact, then either
(a) S = {x ∈ X : x ∈ βΦ(x) for some 0 < β < 1} is unbounded, or
(b) Φ has a fixed point.

In what follows we employ on # N the Euclidean norm denoted by ‖ · ‖ and the
usual inner product denoted by (·, ·) $ N . Also by ‖ · ‖p (1 6 p 6 ∞) we denote the
Lp norm. Moreover, for the Sobolev spaces W 1,p(T, # N ) the norm will be denoted
by ‖ · ‖. There will be no confusion with the # N -norm since it will be clear from the

context which one is used. Finally by 〈·, ·〉 we denote the duality brackets for the
pair (W 1,p(T, # N ),W 1,p(T, # N )∗) or for (W 1,p

0 (T, # N ),W−1,q(T, # N ))
(

1
p + 1

q = 1
)

and by (·, ·)pq the duality brackets for the pair (Lp(T, # N ), Lq(T, # N ))
(

1
p + 1

q = 1
)
.

3. The vector Dirichlet problem

In this section we study the Dirichlet problem (1). The hypotheses on the data of

the problem are the following:

H(a)1: a : # N × # N → Pkc( # N ) is a multifunction such that
(i) for all x ∈ # N , y → a(x, y) is maximal monotone and strictly monotone, for
every y ∈ # N x→ a(x, y) is lsc and (x, y) → a(x, y) has closed graph;

(ii) for all x, y ∈ # N and all v ∈ a(x, y), ‖v‖ 6 c1(1+‖x‖p−1 +‖y‖p−1), 2 6 p <∞,
c1 > 0;

(iii) for all x, y ∈ # N and all v ∈ a(x, y), (v, y) $ N > c2‖y‖p − c3, with c2, c3 > 0.

Consider the differential operator x→ −(‖x′(·)‖p−2x′(·))′ (the vectorial p-Laplacian,
see Manasevich-Mawhin [28]) and consider the nonlinear eigenvalue problem:

(3)

{
− (‖x′(t)‖p−2x′(t))′ = µ‖x(t)‖p−2x(t) a.e. on T,

x(0) = x(b) = 0, µ ∈ # .

}

If for some µ ∈ # , problem (3) has a nontrivial solution x ∈ C1(T, # N ), then µ is
said to be an eigenvalue of the p-Laplacian differential operator. It is well-known

(see for example Fučík-Nečas-Souček-Souček [18] (scalar problems) and Manasevich-

Mawhin [29] (vector problems)), that all the eigenvalues of (3) form a countable set

{µk}k>1 such that 0 < µ1 < µ2 < . . . < µk < . . . and lim
n→∞

µn = ∞. Moreover, µ1 =
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inf
[
‖x′‖p

p/‖x‖p
p : x ∈ W 1,p

0 (T, # N ), x 6= 0
]
(Rayleigh quotient) and µ1 is simple. The

infimum in the Rayleigh quotient is attained at w1 the normalized first eigenfunction.

Also w1(t) 6= 0 for all t ∈ (0, b).

H(F)1: F : T × # N × # N → Pkc( # N ) is a multifunction such that

(i) for all x, y ∈ # N , t→ F (t, x, y) is measurable;

(ii) for almost all t ∈ T , (x, y) → F (t, x, y) has a closed graph;

(iii) for almost all t ∈ T , all x, y ∈ # N and all g ∈ F (t, x, y), we have

‖g‖ 6 γ1(t, ‖x‖) + γ2(t, ‖x‖)‖y‖p−1

with

sup
06r6k

γ1(t, r) 6 η1,k(t), η1,k ∈ Lq(T )
(1
p

+
1
q

= 1
)

and

sup
06r6k

γ2(t, r) 6 η2,k(t) a.e. on T, η2,k ∈ L∞(T )

for all k > 0;

(iv) if m(t, x, y) = inf[(g, x) $ N : g ∈ F (t, x, y)], then

lim
‖x‖→∞

[
inf

y∈ $ N

m(t, x, y)
‖x‖p

]
> −k1(t)

uniformly for almost all t ∈ T , with k1 ∈ L∞(T ) and 0 6 k1(t) 6 c2µ1 a.e. on T ;

the inequality is strict on a set of positive Lebesgue measure and c2 > 0 as in
hypothesis H(a)1 (iii).

Remark. Hypothesis H(F)1 (iv) is a kind of a nonresonance condition.

H(A)1: A : # N → 2 $ N

is maximal monotone, with domA = {x ∈ # N : A(x) 6= ∅} =
# N and 0 ∈ A(0).

Fix x ∈ W 1,p
0 (T, # N ) and let εx : W 1,p

0 (T, # N ) → 2W−1,q(T, $ N) be defined by

εx(v) =
{
−w′ : w ∈ Sq

a(x(·),v′(·))
}
.
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Lemma 2. If hypotheses H(a)1 hold then εx : W 1,p
0 (T, # N ) → 2W−1,q(T, $ N) is

maximal monotone.
%'&)(*(,+

. Because of hypotheses H(a)1, it is clear that for all v ∈ W 1,p
0 (T, # N ),

Sq
a(x(·),v′(·)) ∈ Pfc(Lq(T, # N )) and so εx has nonempty, closed and convex values.

Also εx(·) is monotone. So according to what was said in Section 2 we know that in
order to prove the desired maximality of εx, it suffices to show that for every z, y ∈
W 1,p

0 (T, # N ), the multifunction r → εx(z+ry) is usc from [0, 1] intoW−1,q(T, # N )w.

Since εx is bounded (hypothesis H(a)1 (ii)), to show upper semicontinuity of εx, it is

enough to show that Gr εx is sequentially closed in W
1,p
0 (T, # N ) ×W−1,q(T, # N )w

(recall that sinceW 1,p
0 (T, # N ) is separable, there is a metric onW−1,q(T, # N ) which

generates a topology weaker than the weak topology and coincides with it on bounded

sets; for this reason and because of hypothesis H(a)1 (ii) it suffices to work with
sequences and establish the sequential closedness of Gr εx). So let rn → r in [0, 1],
hn

w→ h in W−1,q(T, # N ) and hn ∈ εx(z + rny), n > 1. By definition we have hn =
−g′n, gn ∈ Sq

a(x(·),(z+tny)′(·)). Hypothesis H(a) (ii), allows us to assume (by passing

to a subsequence if necessary) that gn
w→ g in Lq(T, # N ), hence h = −g′. Recall that

since a(x(t), ·) is maximal monotone and dom a(x(t), ·) = # N , the multifunction

u→ a(x(t), u) is usc from # N into # N . Then using Proposition B we have that

g(t) ∈ conv lim a(t, x(t), (z + rny)′(t)) ⊆ a(t, x(t), (z + ry)′(t)) a.e. on T,

where the last inclusion is a consequence of the closed graph of (x, y) → a(x, y).
Thus g ∈ Sq

a(x(·),(z+ry)′(·)) and so h ∈ εx(z + ry) which completes the proof of the
Lemma. �

Now let K : W 1,p
0 (T, # N ) → Pfc(Lq(T, # N )) be defined by

K(x) = Sq
a(x(·),x′(·)).

Then let α : W 1,p
0 (T, # N ) → Pfc(W−1,q(T, # N )) be defined by

α(x) = {−g′ : g ∈ K(x)}.

Using Lemma 2, we can prove the following useful property for the operator α(·).

Proposition 3. If hypotheses H(a)1 hold, then

α : W 1,p
0 (T, # N ) → Pfc(W−1,q(T, # N ))

is bounded, pseudomonotone.
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%'&)(*(,+
. The boundedness of α follows from hypothesis H(a)1 (ii). Since α is

bounded, in order to prove that it is pseudomonotone it suffices to show that it is

generalized pseudomonotone (see Section 2). To this end let xn
w→ x inW 1,p

0 (T, # N ),
hn

w→ h in W−1,q(T, # N ), hn ∈ α(xn), n > 1, and assume lim 〈hn, xn − x〉 6 0 (here
by 〈·, ·〉 we denote the duality brackets for the pair (W 1,p

0 (T, # N ),W−1,q(T, # N )).
We need to show that h ∈ α(x) and 〈hn, xn〉 → 〈h, x〉. By definition hn = −g′n with
gn ∈ K(xn), n > 1. From hypothesis H(α)1 (ii), we see that {gn}n>1 ⊆ Lq(T, # N )
is bounded and so by passing to a subsequence if necessary, we may assume that

gn
w→ g in Lq(T, # N ). Hence h = −g′. We have to show that −g′ ∈ α(x). To this

end let z ∈ W 1,p
0 (T, # N ) and consider the multifunction ξ : T → Pkc( # N ) defined by

ξ(t) = a(x(t), z′(t)). By virtue of hypothesis H(a) (i) α has a closed graph, hence ξ is
graph measurable and so Lebesgue measurable (by virtue of the completeness of the

Lebesgue σ-field, see Section 2). Using the Yankov-von Neumann-Aumann Selection

Theorem (see Theorem A), we can find w : T → # N a measurable map such that

w(t) ∈ a(x(t), z′(t)) a.e. on T .
Also let Γn(t) = {y ∈ α(xn(t), z′(t)) : ‖w(t) − y‖ = d(w(t), α(xn(t), z′(t)))}. Evi-

dently for almost all t ∈ T , Γn(t) 6= ∅. By redefining Γn on the exceptional Lebesgue-

null set, we may assume that for all t ∈ T , Γn(t) 6= ∅. Note that since a(·, ·) has
closed graph (Hypothesis H(a) (i)) it is graph measurable and so t → a(xn(t), z′(t))
is measurable. Therefore t→ d(w(t), a(xn(t), z′(t))) is a measurable # + -valued func-

tion and so (t, y) → un(t, y) = ‖w(t)− y‖− d(w(t), a(xn(t), z′(t))) is a Caratheodory
function (i.e. measurable in t ∈ T and continuous in y ∈ # N ), thus it is jointly

measurable. Therefore it follows that GrΓn = {(t, y) ∈ Gra(xn(·), z′(·)) : un(t, y) =
0} ∈ L(T )×B( # N ) with L(T ) being the Lebesgue σ-field of T and B( # N ) the Borel
σ-field of # N . So we can apply Theorem A and obtain wn ∈ Sq

a(xn(·),z′(·)), n > 1,
such that

‖w(t) − wn(t)‖ = d(w(t), a(xn(t), z′(t)))(4)

6 h∗(a(x(t), z′(t)), a(xn(t)), z′(t))) a.e. on T.

Because xn
w→ x in W 1,p

0 (T, # N ), we have xn → x in C(T, # N ) (W 1,p
0 (T, # N ) is

embedded compactly in C(T, # N )). Also from the lower semicontinuity of a(·, z′(t))
(hypothesis H(a)1 (i)), we have that

h∗(a(x(t), z′(t)), a(xn(t), z′(t))) → 0 a.e. on T as n→∞

(see Section 2 where for compact valued multifunctions we gave an equivalent defi-

nition of lower semicontinuity in terms of h∗).
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So from (4) it follows that wn(t) → w(t) a.e. on T and by the dominated conver-
gence theorem, we have wn → w in Lq(T, # N ), hence w′n → w′ in W−1,q(T, # N ) as
n→∞. Exploiting the monotonicity of a(xn(·), ·) (hypothesis H(a)1 (i)), we have

0 6
∫ b

0

(gn(t)− wn(t), x′n(t)− z′(t)) $ N dt

=
∫ b

0

(gn(t), x′n(t)− x′(t)) $ N dt+
∫ b

0

(gn(t), x′(t)− z′(t)) $ N dt

+
∫ b

0

(wn(t), z′(t)− x′n(t)) $ N dt

= 〈−g′n, xn − x〉+
∫ b

0

(gn(t), x′(t)− z′(t)) $ N dt+ 〈−w′n, z − xn〉

(by integration by parts).

Passing to the limit as n→∞ we obtain

0 6
∫ b

0

(g(t), x′(t)− z′(t)) $ N dt+ 〈−w′, z − x〉 = 〈−g′ − w′, x− z〉 .

Since (z, w′) ∈ Gr εx was arbitrary and εx is maximal monotone (Lemma 2), we

infer that −g′ = h ∈ εx(x) = α(x). As above we can find un ∈ Sq
a(xn(·),x′(·)) such that

un → g in Lq(T, # N ). Then u′n → g′ in W−1,q(T, # N ) and using the monotonicity
of a(xn(t), ·) we have

〈hn, xn − x〉 = 〈hn + u′n, xn − x〉 − 〈u′n, xn − x〉

=
∫ b

0

(gn(t)− un(t), x′n(t)− x′(t)) $ N dt−
∫ b

0

(u′n(t), xn(t)− x(t)) $ N dt

>
∫ b

0

(un(t), x′n(t)− x′(t)) $ N dt = 〈−u′n, xn − x〉 → 0 as n→∞,

=⇒ lim 〈hn, xn〉 > 〈h, x〉 .

On the other hand from the choice of the sequences {xn}n>1, {hn}n>1 we have

lim 〈hn, xn〉 6 〈h, x〉, hence 〈hn, xn〉 → 〈h, x〉. This proves that α is generalized
pseudomonotone, thus pseudomonotone (see Theorem D (c)). �

For λ > 0, let Aλ : # N → # N be the Yosida approximation of A and let Âλ :
Lp(T, # N ) → Lq(T, # N ) be the corresponding Nemyckii operator, i.e. Âλ(x)(·) =
Aλ(x(·)). Note that since by hypothesis 0 ∈ A(0), we have Aλ(0) = 0 and be-
cause Aλ is Lipschitz continuous for every x ∈ Lp(T, # N ), we have ‖Aλ(x(t))‖ 6
λ−1‖x(t)‖ a.e. on T . Therefore Âλ takes values into Lp(T, # N ) ⊆ Lq(T, # N )
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(since 2 6 p < ∞, see hypothesis H(a)1 (ii)). Clearly Âλ is continuous and

of course so is Âλ as a map from W 1,p
0 (T, # N ) into W−1,q(T, # N ). Let N :

W 1,p
0 (T, # N ) → Pfc(Lq(T, # N )) be the multivalued Nemyckii operator correspond-
ing to F , i.e. N(x) = Sq

F (·,x(·),x′(·)). We know that N is usc from W 1,p
0 (T, # N )

into Lq(T, # N )w (see Halidias-Papageorgiou [20] or Frigon [16]). Then let Vλ :
W 1,p

0 (T, # N ) → Pfc(W−1,q(T, # N )) be defined by

Vλ(x) = α(x) + Âλ(x) +N(x).

Proposition 4. If hypotheses H(a)1, H(F)1, H(A)1 hold, then Vλ is pseudomono-

tone, coercive for all λ > 0.
%'&)(*(,+

. Evidently Vλ is Pwkc(W−1,q(T, # N ))-valued and bounded. So as be-
fore in order to prove the pseudomonotonicity of Vλ, it suffices to show that it is

generalized pseudomonotone. To this end let xn
w→ x in W 1,p

0 (T, # N ), vn
w→ v in

W−1,q(T, # N ), vn ∈ Vλ(xn), n > 1 and assume lim 〈vn, xn − x〉 6 0. From the com-
pact embedding of W 1,p

0 (T, # N ) into C(T, # N ), we have xn → x in C(T, # N ). Let
vn = −g′n + Âλ(xn) + un, with gn ∈ K(xn), un ∈ N(xn), n > 1. We have

(5) 〈un, xn − x〉 = (un, xn − x)pq → 0.

Here by (·, ·)pq we denote the duality brackets for the dual pair (Lp(T, # N ),
Lq(T, # N )). Recall that A(·) is usc and Pkc( # N )-valued (being maximal mono-
tone with domA = # N ). So if %1 = sup

n>1
‖xn‖∞, then A(B̂%1) is compact (see

Section 2). Therefore we have sup
n>1

‖Âλn(xn)‖∞ 6 sup[‖e‖ : e ∈ A(B%1)] = β1 < ∞.
Thus we can say that

(6)
〈
Âλ(xn), xn − x

〉
= (Âλ(xn), xn − x)pq → 0 as n→∞.

From (5) and (6) and recalling the choice of the sequences {xn} and {vn}n>1, we

obtain

(7) lim 〈−g′n, xn − x〉 6 0.

But {gn}n>1 ⊆ Lq(T, # N ) is bounded (hypothesis H(α)1 (ii)) and so by passing
to a subsequence if necessary, we may assume that gn

w→ g in Lq(T, # N ) and so
−g′n

w→ −g′ in W−1,q(T, # N ) as n → ∞. From Proposition 3, we know that α is
pseudomonotone. Since −g′n ∈ α(xn), n > 1, we infer that −g′ ∈ α(x) and so
g ∈ K(x).
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As before (see the proof of Proposition 3), with the use of the Yankov-von

Neumann-Aumann Selection Theorem, we can produce hn ∈ Lq(T, # N ) such that

hn(t) ∈ a(xn(t), x′(t)) and ‖g(t)− hn(t)‖ = d(g(t), a(xn(t), x′(t))) a.e. on T.

Hence ‖g(t) − hn(t)‖ 6 h∗(a(x(t), x′(t)), a(xn(t), x′(t))) → 0 a.e. on T (hypothesis
H(a)1 (i)) and so hn → g in Lq(T, # N ). Exploiting the monotonicity of a(x, ·), we
have

(gn − hn, x
′
n − x′)pq =

∫ b

0

(gn(t)− hn(t), x′n(t)− x′(t)) $ N dt > 0.

But from (7) and since hn → g in Lq(T, # N ), we have

lim(gn − hn, x
′
n − x′)pq 6 0.

Therefore it follows that (gn−hn, x
′
n−x′)pq → 0 and from the monotonicity of a(x, ·),

we also have lim(gn(t) − hn(t), x′n(t)− x′(t)) $ N = 0 a.e. on T . Let ξn(t) = (gn(t) −
hn(t), x′n(t)−x′(t)) $ N . Using hypotheses H(a) (ii) and (iii), for all t ∈ T \N1, |N1| = 0
(| · | denotes the Lebesgue measure on # ), we have

ξn(t) > c2(‖x′n(t)‖p + ‖x′(t)‖p)− 2c3

−‖x′(t)‖(c1 + c1(%
p−1
1 ‖+ ‖x′n(t)‖p−1))− ‖x′n(t)‖(c1 + c1(%

p−1
1 ‖+ ‖x′(t)‖p−1))

=⇒ {x′n(t)}n>1 ⊆ # N is bounded for all t ∈ T \N1, |N1| = 0.

So for every t ∈ T \N1, we can find a subsequence (in general depending on t) such

that x′n(t) → vt in # N . Also for the same reason, we may assume that gn(t) → wt

in # N . But recall that for all t ∈ T \ N1, gn(t) ∈ a(xn(t), x′n(t)) and by hypothe-
sis H(a)1 (i) a(·, ·) has closed graph. So passing to the limit as n → ∞ we obtain
wt ∈ a(x(t), vt). Also from the construction of the sequence {hn}n>1 ⊆ Lq(T, # N ),
we have

‖g(t)− hn(t)‖ 6 h∗(a(x(t), x′(t)), a(xn(t), x′n(t))) → 0

for t ∈ T \N1 as n→∞,

=⇒ hn(t) → g(t) for all t ∈ T \N1, |N1| = 0.

Since ξn(t) → 0 for all T \N1 in the limit as n→∞, we have

(wt − g(t), vt − x′(t)) $ N = 0

with wt ∈ a(x(t), vt), g(t) ∈ a(x(t), x′(t)). Because a(x, ·) is strictly monotone
(hypothesis H(a)1 (ii)), from the last equality it follows that vt = x′(t) for all t ∈
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T \N1. Since every subsequence of {x′n(t)}n>1, t ∈ T \N1, has a further subsequence

converging to x′(t), we infer that x′n(t) → x′(t) in # N for all t ∈ T \N1, |N1| = 0.
Then since un

w→ u in Lq(T, # N ), invoking Proposition B, we have that

u(t) ∈ conv limF (t, xn(t), x′n(t)) ⊆ F (t, x(t), x′(t)) a.e. on T

the last inclusion following from hypothesis H(F)1 (ii). So u ∈ N(x) = Sq
F (·,x(·),x′(·)).

Also we have Âλ(xn) → Âλ(x) in Lq(T, # N ) and g′n
w→ g′ in W−1,q(T, # N ). Thus

vn = −g′n + Âλn(xn) + un
w→ −g′ + Âλ(x) + u in W−1,q(T, # N ),

=⇒ v = −g′ + Âλ(x) + u with g ∈ K(x), u ∈ N(x),

=⇒ v ∈ Vλ(x).

Recall that from the choice of the sequence {xn}n>1 ⊆ W 1,p
0 (T, # N ), we have

lim 〈vn, xn〉 6 〈v, x〉. Also we have

〈vn, xn − x〉 = 〈−g′n, xn − x〉+ (Âλ(xn), xn − x)pq + (un, xn − x)pq

=⇒ 〈vn, xn − x〉 =
∫ b

0

(gn(t), x′n(t)− x′(t)) $ N dt+ ηn,

with

ηn = (Âλ(xn), xn − x)pq + (un, xn − x)pq .

We know that ηn → 0, while from the previous considerations we have lim
∫ b

0 (gn(t),
x′n(t)−x′(t)) $ N dt > 0, hence 〈v, x〉 6 lim 〈vn, xn〉. So finally 〈vn, xn〉 → 〈v, x〉. This
proves the generalized pseudomonotonicity of Vλ, hence its pseudomonotonicity.

Next we show the coercivity of Vλ(·). To this end let v ∈ Vλ(x). We have

〈v, x〉 = 〈−g′, x〉+ (Âλ(x), x)pq + (u, x)pq with g ∈ K(x), u ∈ N(x).

Because Âλ(0) = 0, we have (Âλ(x), x)pq > 0 and so

〈v, x〉 > 〈−g′, x〉+ (u, x)pq =
∫ b

0

(g(t), x′(t)) $ N dt+
∫ b

0

(u(t), x(t)) $ N dt.

From hypothesis H(a)1 (iii), we have

(9)
∫ b

0

(g(t), x′(t)) $ N dt > c2‖x′‖p
p − c3b.
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Also by virtue of hypothesis H(F)1 (iv), given ε > 0, we can find M = M(ε) > 0
such that for almost all t ∈ T , all ‖x‖ > M , all y ∈ # N and all u ∈ F (t, x, y), we
have (u, x) $ N > −(k1(t) + ε)‖x‖p. Moreover, from hypothesis H(F)1 (iii) we know
that for almost all t ∈ T , all ‖x‖ 6 M , all y ∈ # N and all u ∈ F (t, x, y), we have

‖u‖ 6 γ1(t, ‖x‖) + γ2(t, ‖x‖)‖y‖p−1

=⇒ (u, x) $ N > −Mη1,M (t)−Mη2,M (t)‖y‖p−1.

Therefore, for almost all t ∈ T , all x, y ∈ # N and all u ∈ F (t, x, y), we have

(u, x) $ N > −(k1(t) + ε)‖x‖p −Mη1,M (t)−Mη2,M (t)‖y‖p−1

=⇒ (u, x) $ N > −(k1(t) + ε)‖x‖p − β1‖y‖p−1 − β2(t)

with β1 > 0 and β2 ∈ Lq(T )+. So we obtain

(10)
∫ b

0

(u(t), x(t)) $ N dt > −
∫ b

0

k1(t)‖x(t)‖p dt− ε‖x‖p
p − β1‖x′‖p−1

p − ‖β2‖1.

Using (9) and (10) in (8), we have

(11) 〈v, x〉 > c2‖x′‖p
p −

∫ b

0

k1(t)‖x(t)‖p dt− ε‖x‖p
p − β1‖x′‖p−1

p − β3

for some β3 > 0.
Set χ(x) = c2‖x′‖p

p −
∫ b

0
k1(t)‖x(t)‖p dt, x ∈ W 1,p

0 (T, # N ).

Claim. χ(x) > β4‖x′‖p
p for some β4 > 0 and all x ∈W 1,p

0 (T, # N ).

Suppose the claim is not true. Then by the positive p-homogeneity of χ(·) and
since ‖x′‖p, for x ∈ W 1,p

0 (T, # N ), is an equivalent norm on W 1,p
0 (T, # N ) (Poincaré

inequality), we can find {xn}n>1 ⊆ W 1,p
0 (T, # N ), ‖x′n‖p = 1 such that χ(xn) ↓ 0 as

n → ∞. We may assume that xn
w→ x in W 1,p

0 (T, # N ) and xn → x in C(T, # N ).
Exploiting the weak lower semicontinuity of the norm functional, we obtain

c2‖x′‖p
p −

∫ b

0

k1(t)‖x(t)‖p dt 6 0

=⇒ c2‖x′‖p
p 6

∫ b

0

k1(t)‖x(t)‖p dt 6 c2µ1‖x‖p
p

=⇒ ‖x′‖p
p 6 µ1‖x‖p

p.

Since the opposite inequality is always true (Rayleigh quotient), we deduce that

(12) ‖x′‖p
p = µ1‖x‖p

p.
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Because ‖x′n‖p = 1, we have χ(xn) = c2 −
∫ b

0 k1(t)‖xn(t)‖p dt, n > 1 and so in the
limit as n→∞ we obtain c2 =

∫ b

0
k1(t)‖x(t)‖p dt, hence x 6= 0. Therefore from (12)

we infer that x = w1= the first eigenfunction of the vector p-Laplacian differential

operator (recall that µ1 > 0 is simple). Then from hypothesis H(F)1 (iv) and since
w1(t) 6= 0 for all t ∈ (0, b), we have

1 =
∫ b

0

k1(t)
c2

‖w1(t)‖p dt < µ1‖w1‖p
p = ‖w′1‖p

p = ‖x′‖p
p,

a contradiction, since from x′n
w→ x′ in Lp(T, # N ), we have ‖x′‖p

p 6 lim ‖x′n‖p
p = 1.

This proves the claim.

Using the claim in (11), we can write

(13) {v, x} >
(
β4 −

ε

µ1

)
‖x′‖p

p − β1‖x′‖p−1
p − β3.

Let ε > 0 such that µ1β4 > ε. Then from the last inequality it follows that Vλ(·) is
coercive. �

Since Vλ(·) is pseudomonotone and coercive, it is surjective (see Theorem D (d)).
So we can find x ∈ W 1,p

0 (T, # N ) such that 0 ∈ Vλ(x). This means that −g′+Âλ(x)+
u = 0 for some g ∈ K(x), and some u ∈ N(x). Therefore

{
a(x(t), x(t))′ 3 Aλ(x(t)) + u(t) a.e. on T,

x(0) = x(b) = 0, u(t) ∈ F (t, x(t), x′(t)) a.e. on T.

}

In what follows we will need the following auxiliary result on the maximal mono-

tonicity of the lifting of A on Lp(T, # N ).

Lemma 5. If hypotheses H(A)1 hold, then Â : D ⊆ Lp(T, # N ) → 2Lq(T, $ N) ,

defined by Â(x) = {h ∈ Lq(T, # N ) : h(t) ∈ A(x(t)) a.e. on T} for all x ∈ D =
{x ∈ Lp(T, # N ) : there exists h ∈ Lq(T, # N ) such thath(t) ∈ A(x(t)) a.e. onT}, is
maximal monotone.

%'&)(*(,+
. The monotonicity of Â is clear. We will show that R(Â + j) =

Lq(T, # N ), where j : Lp(T, # N ) → Lq(T, # N ) is defined by j(x)(·) = ‖x(·)‖p−2x(·).
To this end let h ∈ Lq(T, # N ) and set

S(t) = {(x, u) ∈ GrA : u+ ψ(x) = h(t), ‖x‖ 6 ‖h(t)‖1/(p−1) + 1}

where ψ : # N → # N is defined by ψ(x) = ‖x‖p−2x. The map A + ψ is maximal

monotone, coercive. So using Theorem A and Hu-Papageorgiou [23, p. 371], we see
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that S(t) 6= ∅ a.e. on T . Moreover, it is clear that GrS ∈ L×B( # N ), with L being the
Lebesgue σ-field of T (recall that GrA is closed). So we can apply the Yankov-von
Neumann-Aumann Selection Theorem (see Theorem A) and obtain x, u : T → # N

measurable maps such that (x(t), u(t)) ∈ S(t) a.e. on T , hence u(t)+‖x(t)‖p−2x(t) =
h(t) a.e. on T . Evidently u ∈ Lq(T, # N ). This proves that R(Â + j) = Lq(T, # N ).
Now suppose that for some y ∈ Lp(T, # N ) and v ∈ Lq(T, # N ) we have

(u− v, x− y)pq > 0 for all (x, u) ∈ Gr Â.

Let x1 ∈ D be such that v + j(y) = u1 + j(x1), u1 ∈ Â(x1) (it exists owing to the
surjectivity of Â+ j). So

0 6 (u1 − u1 − j(x1) + j(y), x1 − y)pq = (j(y)− j(x1), x1 − y)pq 6 0 i.e. x1 = y

(from the strict monotonicity of j). Hence y ∈ D and v = u1 ∈ Â(x1). This proves
the maximality of Â. �

Remark. When p = 2, this result is well-known and in fact we do not need
that domA = # N (see for example Brezis [3, p. 25] or Hu-Papageorgiou [23, Exam-

ple III.2.23, p. 328]). However, when p > 2, we were unable to find in the literature
a corresponding result and the proof of the p = 2 case fails since the Yosida approx-
imation of Â is no longer equal to λ−1(I − Jλ).

Now we are ready to state and prove the first existence theorem for the problem (1).

Theorem 6. If hypotheses H(a)1, H(F)1, H(A)1 hold, then the problem (1) has
at least one solution x ∈ W 1,p

0 (T, # N ).
%'&)(*(,+

. Let λn ↓ 0 and consider the following sequence of auxiliary problems

(14)

{
a(xn(t), x′n(t))′ −Aλn(xn(t))− F (t, xn(t), x′n(t)) 3 0 a.e. on T,

xn(0) = xn(b) = 0.

}

We have already seen that for every n > 1, the problem (14) has a solution
xn ∈W 1,p

0 (T, # N ). We have

−g′n + Âλn(xn) + un = 0, with gn ∈ K(xn), un ∈ N(xn),

=⇒
(
β4 −

ε

µ1

)
‖x′n‖p

p 6 β1‖x′n‖p−1
p + β3 (see (13)).

Choosing ε > 0 so that 0 < ε < β4µ1, we infer that {xn}n>1 ⊆ W 1,p
0 (T, # N )

is bounded. Hence we may assume that xn
w→ x in W 1,p

0 (T, # N ) and xn → x in
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C(T, # N). Then sup
n>1

‖xn‖∞ = β5 <∞ and sup
n>1

‖Âλn(xn)‖∞ 6 ‖A0(Bβ5)‖ = β6 <∞

and so we may assume that Âλn(xn) w→ w in Lq(T, # N ). Recall that Aλn(xn(t)) ∈
A(Jλn(xn(t))) and

‖Jλn(xn(t))− x(t)‖ 6 ‖Jλn(xn(t)) − Jλn(x(t))‖+ ‖Jλn(x(t)) − x(t)‖
6 ‖xn(t)− x(t)‖+ ‖Jλn(x(t)) − x(t)‖ → 0

as n→∞.

Since ‖Jλn(xn(t))‖ 6 ‖xn(t)‖ 6 β5 for all n > 1 and all t ∈ T , from the dominated

convergence theorem, we see that Jλn(xn(·)) = Ĵλn(xn) → x in Lq(T, # N ). We know
that Âλn(xn) ∈ Â(Ĵλn(xn)) and by Lemma 5, Â is maximal monotone, hence Gr Â
is sequentially closed in Lp(T, # N ) × Lq(T, # N )w. Therefore w ∈ Â(x), i.e. w(t) ∈
A(x(t)) a.e. on T .
Note that {un}n>1 ⊆ Lq(T, # N ) is bounded (hypothesis H(F)1 (iii)) and so

(un, xn − x)pq → 0 as n→∞. Also (Âλn(xn), xn − x)pq → 0 and so finally we have
lim 〈−g′n, xn − x〉 6 0. Since gn ∈ K(xn), n > 1, we may assume that gn

w→ g in

Lq(T, # N ) (hypothesis H(a)1 (ii)) and so g′n
w→ g′ in W−1,q(T, # N ), with −g′ ∈ α(x)

(by Proposition 3). Arguing as in the proof of Proposition 4, we obtain x′n(t) → x′(t)
a.e. on T and so using Proposition B, we have u ∈ N(x). Therefore in the limit as
n→∞, we obtain

−g′ + w + u = 0 with g ∈ K(x), w ∈ Â(x), u ∈ N(x),

=⇒ −a(x(t), x′(t))′ −A(x(t)) − F (t, x(t), x′(t)) 3 0 a.e. on T,

x(0) = x(b) = 0,

i.e. x ∈ W 1,p
0 (T, # N ) solves (1). �

We can have a version of Theorem 6 in which F has nonconvex values (nonconvex

problem). In this case the hypotheses on the multivalued F (t, x, y) are the following:

H(F)2: F : T × # N × # N → Pkc( # N ) is a multifunction such that
(i) (t, x, y) → F (t, x, y) is graph measurable;
(ii) for almost all t ∈ T , (x, y) → F (t, x, y) is lsc;
(iii) and (iv) are the same as H(F)1 (iii) and (iv).

Theorem 7. If hypotheses H(a)1, H(F)2, H(A)1 hold, then the problem (1) has
at least one solution x ∈ W 1,p

0 (T, # N ).
%'&)(*(,+

. As before let N : W 1,p
0 (T, # N ) → Pf (Lq(T, # N )) be the multival-

ued Nemyckii operator corresponding to F , i.e. N(x) = Sq
F (·,x(·),x′(·)). We know
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that N is lsc (see Halidias-Papageorgiou [20] or Frigon [16] or Hu-Papageorgiou [24,

p. 236]. So we can apply Theorem II.8.7, p. 245, of Hu-Papageorgiou [23] and ob-

tain u : W 1,p
0 (T, # N ) → Lq(T, # N ) a continuous map such that u(x) ∈ N(x) for

all x ∈ W 1,p
0 (T, # N ). Let Vλ : W 1,p

0 (T, # N ) → 2W−1,q(T, $ N) \ {∅} be defined by
Vλ(x) = α(x) + Âλ(x) + u(x). By repeating the proof of Proposition 4, we can
check that Vλ(·) is pseudomonotone and coercive, thus surjective. So we can find
x ∈W 1,p

0 (T, # N ) such that 0 ∈ Vλ(x).
Now let λn ↓ 0 and let xn ∈ W 1,p

0 (T, # N ) be such that 0 ∈ Vλn(xn), n > 1. Then
repeating the proof of Theorem 6 and exploiting the continuity of u, we can show

that xn → x in W 1,p
0 (T, # N ) and x is a solution of (1). �

Application 1. As an application of the existence result of this section, we
consider the following nonlinear Dirichlet problem:





(α̂(x(t))‖x′(t)‖p−2x′(t))′ ∈ ∂ϕ(x(t)) + ∂j(t, x(t)),

− c
d
dt

(‖x(t)‖2)x′(t) a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b), 2 6 p <∞, c > 0.





This is a p-Lienard system. We assume the following:

(1) α̂ ∈ C( # N , # N ), α̂(x) > ĉ > 0 for all x ∈ # N .

(2) ϕ : # N → # is continuous convex but not necessarily differentiable.
(3) j : T × # N → # is a function such that

(i) for all x ∈ # N , t→ j(t, x) is measurable;
(ii) for almost all t ∈ T , x→ j(t, x) is locally Lipschitz;
(iii) for every r > 0, there exists αr ∈ Lq(T ) such that for almost all t ∈ T , all

‖x‖ 6 r and all u ∈ ∂j(t, x), we have

‖u‖ 6 αr(t);

(iv) lim sup
‖x‖→∞

(u, x) $ N/‖x‖p 6 k1(t) uniformly for almost all t ∈ T and all u ∈

∂j(t, x), with k1 ∈ L∞(T ) as in hypothesis H(F)1 (iv).

The following nonsmooth locally Lipschitz integrands j(t, x) satisfy the above
hypotheses:

j(t, x) =





tan−1 ‖x‖ if ‖x‖ 6 1,
k1(t)
p

‖x‖p − ‖x‖ ln ‖x‖ − k1(t)
p

+
π
4
if ‖x‖ > 1

and

j(t, x) =

{
‖x‖ if ‖x‖ 6 1,

k1(t)‖x‖p−1 sin ‖x‖ − k1(t) sin 1 + 1 if ‖x‖ > 1.
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In this case

a(x, y) = α̂(x)‖y‖p−2y, A(x) = ∂ϕ(x)

and

F (t, x, y) = − ∂j(t, x) + 2c(y, x) $ Ny.

Evidently all hypotheses of Theorem 6 are satisfied.

Problems like the above were studied recently in connection with problems in

nonsmooth mechanics (“hemivariational inequalities”, see Naniewicz-Panagiotopou-

los [32]). When ϕ ≡ 0, c = 0 and j(t, x) is C1 and convex in the x ∈ # N variable,

the resulting problem was studied by Mawhin-Willem [31] using the Least Action

Principle. The only other papers that we know which have results on p-Lienard

systems are those by Manasevich-Mawhin [29, Section 7]. Our example partially

extends their results.

4. The scalar periodic problem

In this section we turn our attention to the periodic problem. Serious technical

difficulties force us to examine the scalar problem. It would be very interesting to

know if our results can be extended to vector problems (i.e. to systems). A first step

in that direction was taken by the work of Kyritsi-Matzakos-Papageorgiou [27], but

there the differential operator is of the form x → (a(x′))′ (i.e. independent of x),
with no growth restrictions on a(·) (as in Dang-Oppenheimer [7] and Manasevich-
Mawhin [28]). In this section we study problem (2). The presence of x in the

differential operator raises nontrivial questions concerning the unicity of the solution

of the auxiliary problem (15) below and distinguishes our work here from that of

Kyritsi-Matzakos-Papageorgiou [27].

We make the following hypotheses on the data of (2).

H(a)2: a : # → # satisfies |a(x)−a(y)| 6 k|x−y| for all x, y ∈ # and for some k > 0,
and also 0 < c1 6 a(x) for all x ∈ # .
H(A)2: A : # → 2 $ is a maximal monotone map such that 0 ∈ A(0).

Remark. We know (see for example Brezis [3, p. 43] or Hu-Papageorgiou [23,
p. 348]) that A = ∂ϕ with ϕ : # → # = # ∪ {+∞}, proper convex and lower
semicontinuous. So Aλ = ∂ϕλ, with ϕλ being the Moreau-Yosida approximation

of ϕ.
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We start by considering the following auxiliary problem:

(15)

{
− (a(x(t))x′(t))′ + x(t) +Aλ(x(t)) = h(t) a.e. on T,

x(0) = x(b), x′(0) = x′(b), h ∈ L2(T ), λ > 0.

}

Proposition 8. If hypotheses H(a)2, H(A)2 hold, then for every h ∈ L2(T ) the
problem (15) has a unique solution x ∈ C1(T ) for every λ > 0.

%'&)(*(,+
. Let W 1,2

per(T ) = {x ∈ W 1,2(T ) : x(0) = x(b)} and let α1 : W 1,2
per(T ) →

W 1,2
per(T )∗ be defined by

〈α1(x), y〉 =
∫ b

0

a(x(t))x′(t)y′(t) dt for all x, y ∈W 1,2
per(T ).

Here by 〈·, ·〉 we denote the duality brackets for the pair (W 1,2
per(T ),W 1,2

per(T )∗). We
will show that α1 is pseudomonotone. Since α1 is clearly bounded, it suffices to

show that α1 is generalized pseudomonotone. So we will show that if xn
w→ x in

W 1,2
per(T ), α1(xn) w→ v in W 1,2

per(T )∗ and lim 〈α1(xn), xn − x〉 6 0, then v = α1(x) and
〈α1(xn), xn〉 → 〈α1(x), x〉. To this end we have

〈α1(xn), xn − x〉 =
∫ b

0

a(xn(t))x′n(t)(xn − x)′(t) dt(16)

=
∫ b

0

a(xn(t))(xn − x)′(t)2 dt+
∫ b

0

a(xn(t))x′(t)(xn − x)′(t) dt.

Because xn
w→ x in W 1,2

per(T ), we have xn → x in C(T ) and so a(xn(·)) → a(x(·))
in C(T ). Therefore

∫ b

0

a(xn(t))x′(t)(xn − x)′(t) dt→ 0 as n→∞.

Also by virtue of hypothesis H(a)2, we have

∫ b

0

a(xn(t))(xn − x)′(t)2 dt > c1‖(xn − x)′‖2
2.

Since by hypothesis lim 〈α1(xn), xn − x〉 6 0 and
∫ b

0
a(xn(t))x′(t)(xn−x)′(t) dt→ 0,

from (16) it follows that lim
∫ b

0
a(xn(t))(xn − x)′(t) dt 6 0. Therefore we have

x′n → x′ in L2(T ), hence xn → x in W 1,2
per(T ). It is clear from its definition that

α1 is continuous and so α1(xn) → α1(x) in W 1,2
per(T )∗. Hence v = α1(x) and

〈α1(xn), xn〉 → 〈α1(x), x〉, which proves the pseudomonotonicity of α1.
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Next let V1 : W 1,2
per(T ) → W 1,2

per(T )∗ be defined by V1 = α1 + I + Âλ. Here Âλ :
W 1,p

per(T ) → Lp(T ) ⊆ W 1,p
per(T )∗ is defined by Âλ(x)(·) = Aλ(x(·)) (the Nemyckii

operator corresponding to Aλ). We know that Âλ is monotone continuous, hence it

is maximal monotone. Since the sum of pseudomonotone maps is pseudomonotone

(see Theorem D (e)), we see at once that V1 is pseudomonotone. In addition we have

〈V1(x), x〉 > c1‖x′‖2
2 + ‖x‖2

2 > c2‖x‖2
1,2 for some c2 > 0.

Hence V1 is also coercive, thus it is surjective. So we can find x ∈W 1,2
per(T ) such that

V1(x) = h. For all θ ∈ C∞
0 (T ), we have

〈α1(x), θ〉 + (x, θ)2,2 + (Âλ(x), θ)2,2 = (h, θ)2,2,

=⇒ −(a(x(t))x′(t))′ = h(t)− x(t) −Aλ(x(t)) a.e. on T,

=⇒ a(x(·))x′(·) ∈W 1,2(T ),

=⇒ t→ a(x(t))x′(t)
a(x(t))

= x′(t) is continuous, i.e. x ∈ C1(T ).

Then by integration by parts, for every y ∈W 1,2
per(T ), we have

∫ b

0

(a(x(t))x′(t))′y(t) dt = a(x(b))x′(b)y(b)− a(x(0))x′(0)y(0)(17)

−
∫ b

0

a(x(t))x′(t)y′(t) dt.

Recall that

∫ b

0

a(x(t))x′(t)y′(t) dt = 〈α1(x), y〉 =
∫ b

0

(h(t)− x(t) −Aλ(x(t)))y(t) dt

= −
∫ b

0

(a(x(t))x′(t))′y(t) dt.

Combining this equality with (17), we obtain

a(x(0))x′(0)y(0) = a(x(b))x′(b)y(b) for all y ∈W 1,2
per(T ),

=⇒ x′(0)y(0) = x′(b)y(b) for all y ∈ W 1,2
per(T ) (since x(0) = x(b)),

=⇒ x′(0) = x′(b).

Therefore x ∈ C1(T ) is a solution of (15).
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Next we will show the uniqueness of this solution. Suppose x, y ∈ C1(T ) are two
solutions of (15). We have

−(a(x(t))x′(t))′ + x(t) +Aλ(x(t)) = h(t) a.e. on T,(18)

x(0) = x(b), x′(0) = x′(b),

−(a(y(t))y′(t))′ + y(t) +Aλ(y(t)) = h(t) a.e. on T,(19)

y(0) = y(b), y′(0) = y′(b).

With k > 0 as in hypothesis H(a)2, let

ξε(r) =





∫ r

ε

ds
k2s2

if r > ε,

0 if r < ε,

ε > 0.

From Marcus-Mizel [30], we have ξε((x − y)(·)) ∈ W 1,2(T ). We subtract (19)
from (18), multiply by ξε((x− y)(t)) and then integrate over T . After an integration
by parts on the first integral, we obtain

∫ b

0

(a(x)x′ − a(y)y′)
d
dt
ξε(x− y) dt+

∫ b

0

(x− y)ξε(x− y) dt

+
∫ b

0

(Aλ(x) −Aλ(y))ξε(x− y) dt = 0.

Note that

∫ b

0

(x− y)ξε(x− y) dt =
∫

{x−y>ε}
(x− y)ξε(x− y) dt > 0

and
∫ b

0

(Aλ(x) −Aλ(y))ξε(x− y) dt > 0

(since both Aλ(·) and ξε(·) are monotone). So we obtain
∫ b

0

(a(x)x′ − a(y)y′)
d
dt
ξε(x − y) dt 6 0(20)

⇒
∫ b

0

a(x)(x′ − y′)
d
dt
ξε(x − y) dt

6 −
∫ b

0

(a(x)− a(y))y′
d
dt
ξε(x− y) dt.
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We examine the integral on the left-hand side of (20). Using the chain rule of

Marcus-Mizel [30] for Tε = {t ∈ T : (x− y)(t) > ε}, we have
∫ b

0

a(x)(x′ − y′)
d
dt
ξε(x − y) dt =

∫

Tε

a(x)(x′ − y′)2ξ′ε(x − y) dt(21)

> c1

∫

Tε

(x′ − y′)2
1

k2(x− y)2
dt.

For the integral on the right-hand side of (20), we have

−
∫ b

0

(a(x) − a(y))y′
d
dt
ξε(x− y) dt 6

∫

Tε

k|x− y|y′ x′ − y′

k2(x− y)2
dt(22)

=
∫

Tε

y′
x′ − y′

k(x− y)
dt 6 ‖y′‖2

(∫

Tε

(x′ − y′)2

k2(x− y)2
dt

)1/2

.

Using (21) and (22) in (20), we have

c1

∫

Tε

(x′ − y′)2
1

k2(x − y)2
dt 6 ‖y′‖2

(∫

Tε

(x′ − y′)2
1

k2(x − y)2
dt

)1/2

=⇒
∫

Tε

(x′ − y′)2
1

k2(x− y)2
dt 6 1

c21
‖y′‖2

2

=⇒
∫

Tε

(x′ − y′)2
1

(x− y)2
dt 6 k2

c21
‖y′‖2

2.

Thus if θ(t) = (x− y)(t) for all t ∈ T , we have
∫

Tε

θ′(t)2

θ(t)2
dt 6 k2

c21
‖y′‖2

2.

Set

ηε(r) =





∫ r

ε

ds
s
if r > ε,

0 if r < ε.

Then the last inequality reads
∫ b

0

( d
dt
ηε((x− y)(t))

)2

dt 6 k2

c21
‖y′‖2

2.

Note that ηε((x − y)(·)) ∈ W 1,2
0 (0, b) (see for example Hu-Papageorgiou [24,

p. 865]). So invoking Poincare’s inequality, we infer that
∫ b

0

|ηε((x − y)(t))|2 dt 6 ĉ‖y′‖2
2 for some ĉ > 0.

Letting ε ↓ 0, we see that the left-hand side goes to +∞, a contradiction. So for
all ε > 0 we must have |Tε| = 0 which means that y > x. In a similar fashion, we

can show that x > y, therefore x = y, i.e. the solution of (15) is unique. �
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Remark. An attempt to extend this proof to the vector problem fails. Moreover,
even in the scalar case the result fails if a(x)x′ is replaced by a fully nonlinear operator
a(x, x′) as in Section 3. It would be very interesting to have a vectorial extension of
Proposition 8.

Now consider the quasilinear operator

α2 : D ⊆ L2(T ) → L2(T )

which is defined by α2(x) = −(a(x)x′)′ for all x ∈ D where

D = {x ∈ C1(T ) : a(x)x′ ∈ W 1,2(T ) : x(0) = x(b), x′(0) = x′(b)}.

Let Kλ = α2 + I + Âλ : D ⊆ L2(T ) → L2(T ). From Proposition 8 we know that
R(Kλ) = L2(T ) and by virtue of the uniqueness of the solution of (15), Kλ is one-

to-one and so K−1
λ : L2(T ) → D ⊆W 1,2

per(T ) is well-defined.

Proposition 9. If hypotheses H(a)2, H(A)2 hold, then K
−1
λ : L2(T ) → D ⊆

W 1,2
per(T ) is completely continuous for every λ > 0.
%'&)(*(,+

. To prove the complete continuity of K−1
λ we need to show that if

un
w→ u in L2(T ), then xn = K−1

λ (un) → x = K−1
λ (u) in W 1,2

per(T ). For every n > 1
we have

α2(xn) + xn + Âλ(xn) = un

=⇒ (α2(xn), xn)2,2 + ‖xn‖2
2 6 (un, xn)2,2 (since (Âλ(xn), xn)2,2 > 0).

Using Green’s identity, we obtain

(α2(xn), xn)2,2 = 〈α1(xn), xn〉 > c1‖x′n‖2
2, n > 1,

and so

c1‖x′n‖2
2 + ‖xn‖2

2 6 ‖un‖2‖xn‖1,2

=⇒ c2‖xn‖ 6 ‖un‖2 with c2 = min{c1, 1},
=⇒ {xn}n>1 ⊆W 1,2

per(T ) is bounded.

So by passing to a subsequence if necessary, we may assume that xn
w→ y

in W 1,2
per(T ) and xn → y in C(T ). We have

0 = lim(α2(xn), xn − y)2,2 = lim 〈α1(xn), xn − y〉
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and from this, as in the proof of Proposition 8, it follows that xn → y in W 1,2
per(T ).

Then a(xn)x′n → a(y)y′ in L2(T ) and {a(xn)x′n}n>1 ⊆ W 1,2(T ) is bounded. So
a(xn)x′n

w→ a(y)y′ in W 1,2(T ) and thus in the limit as n→∞, we have
{
−(a(y(t))y′(t))′ + y(t) +Aλ(y(t)) = u(t) a.e. on T,

y(0) = y(b), y′(0) = y′(b).

Therefore Kλ(y) = u and by Proposition 8, we have y = x. Hence K−1
λ (un) →

K−1
λ (u) in W 1,2

per(T ) which proves the complete continuity of K−1
λ . �

As we did in Section 3, first we will consider the following approximation to prob-

lem (2).

(23)

{
(a(x(t))x′(t))′ ∈ Aλ(x(t)) + F (t, x(t), x′(t)) a.e. on T,

x(0) = x(b), x′(0) = x′(b).

Our hypotheses on the multifunction F (t, x, y) are the following:

H(F)3: F : T × # × # → Pfc( # ) is a multifunction such that
(i) for all x, y ∈ # , t→ F (t, x, y) is measurable;
(ii) for almost all t ∈ T , (x, y) → F (t, x, y) has a closed graph;
(iii) for almost all t ∈ T , all x, y ∈ # and all v ∈ F (t, x, y)

vx > −γ1|x|2 − γ2|x| |y| − c(t)|x|

with γ1, γ2 > 0 and c ∈ L1(T );
(iv) there exist M > 0 such that if |x0| > M , then we can find δ > 0 and ξ > 0 such

that for almost all t ∈ T

inf[vx+ c1|y|2 : |x− x0|+ |y| < δ, v ∈ F (t, x, y)] > ξ > 0

(c1 > 0 as in H(a)1);
(v) for almost all t ∈ T , all x, y ∈ # and all v ∈ F (t, x, y) we have

|v| 6 γ3(t, |x|) + γ4(t, |x|)|y|

with sup
06r6k

γ3(t, r) 6 η1,k(t) a.e. on T , η1,k ∈ L2(T ) and sup
06r6k

γ4(t, r) 6 η2,k(t)

a.e. on T with η2,k ∈ L∞(T ), for all k > 0.
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Remark. By virtue of hypotheses H(F)3 (i) and (ii), we have F (t, x, y) =
[f1(t, x, y), f2(t, x, y)], with t → f1(t, x, y), f2(t, x, y) measurable and (x, y) →
−f1(t, x, y), f2(t, x, y) upper semicontinuous for almost all t ∈ T (see Hu-Papageor-
giou [23, Example I.2.8, p. 32] or Klein-Thompson [26, p. 74]). Hypothesis H(F)3 (iv)
is an extension to the present Caratheodory and set-valued setting of the classical

Nagumo-Hartman condition (see Hartman [22, p. 433] and Erbe-Krawcewicz [10],

[11]).

Proposition 10. If hypotheses H(a)2, H(F)3, H(A)2 hold, then the problem (23)
has at least one solution x ∈ C1(T ) for every λ > 0.

%'&)(*(,+
. Let N : W 1,2

per → Pfc(L2(T )) be the multivalued Nemyckii oper-
ator corresponding to F (i.e. N(x) = S2

F (·,x(·),x′(·)) = {f ∈ L2(T ) : f(t) ∈
F (t, x(t), x′(t)) a.e. on T}). We know that N is usc from W 1,2

per(T ) into L2(T )w.

Let N1(x) = −N(x) + x. Also let Kλ = α2 + I + Âλ : D ⊆ L2(T ) → L2(T ) be as in
Proposition 9. We consider the following abstract multivalued fixed point problem

(24) x ∈ K−1
λ N1(x).

Let S = {x ∈ W 1,2
per(T ) : x ∈ βK−1

λ N1(x), 0 < β < 1}.

Claim. S is bounded in W 1,p
per(T ).

Let x ∈ S. We have

Kλ

( 1
β
x
)
∈ N1(x)(25)

=⇒ α2

( 1
β
x
)

+
1
β
x+ Âλ

( 1
β
x
)

= −f + x with f ∈ N(x) = S2
F (·,x(·),x′(·)),

=⇒
(
α2

( 1
β
x
)
, x

)

2,2

+
1
β
‖x‖2

2 6 −(f, x)2,2 + ‖x‖2
2

(because

(
Âλ

( 1
β
x
)
, x

)

2,2

> 0).

Note that
(
α2

( 1
β
x
)
, x

)

2,2

=
〈
α1

( 1
β
x
)
, x

〉
=

∫ b

0

a
( 1
β
x(t)

) 1
β
|x(t)|2 dt > c1

β
‖x‖2

2.

Using this inequality in (25), we obtain

c1
β
‖x′‖2

2 +
1
β
‖x‖2 6 −(f, x)2,2 + ‖x‖2

2,(26)

=⇒ c1‖x′‖2
2 6 −β(f, x)2,2 + (β − 1)‖x‖2

2 6 −β(f, x)2,2

since 0 < β < 1).
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By virtue of hypothesis H(F)3 (iii), we have

(27) −β(f, x)2,2 6 βγ1‖x‖2
2 + βγ2‖x‖2‖x′‖2 + β‖c‖1‖x‖∞.

We will show that ‖x‖∞ 6 M , with M > 0 as in hypothesis H(F)3 (iv) (Nagumo-
Hartman condition). To this end let r(t) = |x(t)|2 and let t0 ∈ T be the point where
r(·) attains its maximum. Suppose r(t0) > M2 and first assume that 0 < t0 < b.

Then 0 = r′(t0) = 2x(t0)x′(t0) =⇒ x′(t0) = 0. From hypothesis H(F)3 (iv) we can
find δ, ξ > 0 such that for all v ∈ F (t, x, y)

inf[vx + c1|y|2 : |x− x(t0)|+ |y| < δ] > ξ > 0 a.e. on T.

Since x ∈ S, we have x ∈ D and so x ∈ C1(T ). Thus we can find δ1 > 0 such that
if t0 < t 6 t0 + δ1 then |x(t) − x(t0)| + |x′(t)| < δ (because x′(t0) = 0). Then for
almost all t ∈ (t0, t0 + δ1] we have

(28) βf(t)x(t) + βc1|x′(t)|2 > βξ > 0.

From the equation α2

(
β−1x

)
+ β−1x+ Âλ

(
β−1x

)
= −f + x we have

−
(
a
( 1
β
x(t)

) 1
β
x′(t)

)′
+Aλ

( 1
β
x(t)

)
= −f(t) +

(
1− 1

β

)
x(t) a.e. on T,

x(0) = x(b), x′(0) = x′(b).

Using this in (28), we obtain

((
a
( 1
β
x(t)

)
x′(t)

)′
− βAλ

( 1
β
x(t)

)
+ (β − 1)x(t)

)
x(t) + βc1|x′(t)|2

> βξ > 0 a.e. on (t0, t0 + δ1],

=⇒
∫ t

t0

(
a
( 1
β
x(s)

)
x′(s)

)′
x(s) ds− β

∫ t

t0

Aλ

( 1
β
x(s)

)
x(s) ds+ βc1

∫ t

t0

|x′(s)|2 ds

> βξ(t− t0) > 0, for all t ∈ (t0, t0 + δ1],

=⇒
∫ t

t0

(
a
( 1
β
x(s)

)
x′(s)

)′
x(s) ds+ βc1

∫ t

t0

|x′(s)|2 ds > 0,

for all t ∈ (t0, t0 + δ1].
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From integration by parts, we have for t ∈ (t0, t0 + δ1]

a
( 1
β
x(t)

)
x′(t)x(t) − a

( 1
β
x(t0)

)
x′(t0)x(t0)−

∫ t

t0

a
( 1
β
x(s)

)
|x′(s)|2 ds

+βc1
∫ t

t0

|x′(s)|2 ds > 0

=⇒ a
( 1
β
x(t)

)
x′(t)x(t) −

∫ t

t0

c1|x′(s)|2 ds

+βc1
∫ t

t0

|x′(s)|2 ds > 0

=⇒ x′(t)x(t) > 0 i.e. r′(t) > 0 for t ∈ (t0, t0 + δ1],

which contradicts the choice of t0. If t0 = 0, then r′(t0) = r′(0) 6 0 and r(0) = r(b)
(by periodicity) so r′(b) > 0. But r′(0) = 2x(0)x′(0) = 2x(b)x′(b) = r′(b). Hence
r′(0) = 0 and we proceed as above. Similarly if t0 = b. So finally ‖x‖∞ 6 M for all

x ∈ S. Using this in (27), we have

−β(f, x)2,2 6 βγ1M
2
1 + βγ2M1‖x′‖2 + β‖c‖1M for some M1 > 0.

Using this estimate in (26), we obtain an M2 > 0 such that ‖x′‖2 6 M2 for all

x ∈ S. Therefore S ⊆W 1,2
per(T ) is bounded.

The Claim, together with Proposition 9, permit the use of Proposition 1, which

gives a solution for the problem (24), i.e. there exists x ∈ D ⊆ C1(T ) such that
x ∈ K−1

λ N1(x). Evidently x ∈ C1(T ) is the desired solution of (23). �

Using the continuous selection argument in the proof of Theorem 7, we can have

a version of Proposition 10 in which F has nonconvex values (nonconvex problem).

In this case the hypotheses on the multifunction F (t, x, y) are the following:

H(F)4: F : T × # × # → Pf ( # ) is a multifunction such that
(i) (t, x, y) → F (t, x, y) is graph measurable;
(ii) for almost all t ∈ T , (x, y) → F (t, x, y) is lsc;
and it satisfies hypotheses H(F)3 (iii)–(v).

Proposition 11. If hypotheses H(a)2, H(F)4, H(A)2 hold, then the problem (23)
has at least one solution x ∈ C1(T ) for every λ > 0.

Now we will pass to the limit as λ ↓ 0 and obtain solutions for the problem (2) for
both the convex and nonconvex problems.
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Theorem 12. If hypotheses H(a)2, H(F)2, H(A)2 hold, then the problem (2) has
at least one solution x ∈ C1(T ).

%'&)(*(,+
. Let λn ↓ 0, λn > 0 and let xn ∈ C1(T ), n > 1, be solutions of the

problem (23) (Proposition 10). Arguing as in the proof of Proposition 10, we can

show that {xn}n>1 ⊆ W 1,2
per(T ) is bounded and so we may assume that xn

w→ x in

W 1,2
per(T ). Also for every n > 1, we have

α2(xn) + Âλn(xn) = −fn, fn ∈ N(xn),(29)

=⇒ (α2(xn), Âλn(xn))2,2 + ‖Âλn(xn)‖2
2 = −(fn, Âλn(xn))2,2.

Recall that Aλn(·) is Lipschitz continuous (see Proposition C (c)) and so Âλn(xn) ∈
C(T ) for all n > 1. Using integration by parts, we obtain

(α2(xn), Âλn(xn))2,2 = −
∫ b

0

(a(xn(t))x′n(t))′Âλn(xn) dt

= − a(xn(b))x′n(b)Aλn(xn(b)) + a(xn(0))x′n(0)Aλn(xn(0))

+
∫ b

0

a(xn(t))x′n(t)
d
dt
Aλn(xn(t)) dt.

Recall that Aλn(·) is Lipschitz continuous. So from the chain rule of Marcus-
Mizel [30] we have d

dtAλn(xn(t)) = A′λn
(xn(t))x′n(t) a.e. on T and from the mono-

tonicity of Aλn(·) we have A′λn
(xn(t)) > 0 a.e. on T . Since

a(xn(0))x′n(0)Aλn(xn(0)) = a(xn(b))x′n(b)Aλn(xn(b))

(periodic boundary conditions), we obtain

(α2(xn), Âλn(xn))2,2 =
∫ b

0

a(xn(t))Aλn(xn(t))|xn(t)|2 dt > 0.

So using this in (29), we obtain

‖Âλn(xn)‖2
2 6 ‖fn‖2‖Âλn(xn)‖2,

=⇒ {Âλn(xn)}n>1 ⊆ L2(T ) is bounded (hypothesis H(F)3 (v)).

We may assume that Âλn(xn) w→ u, fn
w→ f in L2(T ). Also as in the proof of

Proposition 8, we can show that xn → x in W 1,2
per(T ). Hence, by virtue of Proposi-

tion B as before (see the proof of Proposition 4), we can check that f ∈ N(x). In
the limit as n→∞, we obtain

{
(a(x(t))x′(t))′ = u(t) + f(t) a.e. on T,

x(0) = x(b), x′(0) = x′(b).
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We will finish the proof if we show that u(t) ∈ A(x(t)) a.e. on T . Let Ĵλ : L2(T ) →
L2(T ) be the Nemyckii operator corresponding to the resolvent function Jλ of the op-

erator A, i.e. Ĵλ(x)(·) = Jλ(x(·)) (see Section 2). Recall that Jλ is nonexpansive. So

from Marcus-Mizel [30], we have Ĵλ(xn) ∈W 1,2(T ), d
dtJλn(xn(t)) = J ′λn

(xn(t))x′n(t)
and |J ′λn

(xn(t))| 6 1 a.e. on T . Therefore |J ′λn
(xn(t))x′n(t)| 6 ‖x′n(t)‖ a.e. on T and

so {Ĵλn(xn)}n>1 ⊆ W 1,2
per(T ) is bounded. Thus we may assume that Ĵλn(xn) w→ z

in W 1,2(T ) and Ĵλ(xn) → z in C(T ). We know that

Jλn(xn(t)) + λnAλn(xn(t)) = xn(t) (since Aλn =
1
λn

(I − Jλn))

=⇒ Ĵλn(xn) + λnÂλn(xn) = xn.

Passing to the limit as n → ∞ and since λn → 0, {Âλn(xn)}n>1 ⊆ L2(T ) is
bounded, we obtain z = x. So Ĵλn(xn) → x in C(T ).

Note that |Jλn(xn(t))−Jλn (x(t))| 6 ‖xn−x‖∞ → 0. So Ĵλn(x) → x in C(T ) and
of course in L2(T ). Recall that A = ∂ϕ for some ϕ ∈ Γ0( # ) and so Â = ∂Φ with

Φ(x) =





∫ b

0

ϕ(x(t)) dt if ϕ(x(·)) ∈ L1(T ),

+∞ otherwise

(see for example Brezis [3, p. 47] or Hu-Papageorgiou [23, p. 349]). Then Ĵλn is the

resolvent operator of Â and so Ĵλn(x) → proj(x;D), with D being the domain of
Â = ∂Φ (i.e. D = {x ∈ L2(T ) : Â(x) = ∂Φ(x) 6= ∅}). But we know that Ĵλn(x) → x

in L2(T ). Hence x = proj(x;D), i.e. x ∈ D. We have Âλn(xn) ∈ Â(Ĵλn(xn)) (see
Theorem C (b)), Ĵλn(xn) → x ∈ D in L2(T ) and Âλn(xn) w→ u in L2(T ). Invoking
proposition 4.33 (b), p. 351, of Hu-Papageorgiou [23], we conclude that u ∈ Â(x).
Therefore finally we have

(a(x(t))x′(t))′ ∈ A(x(t)) + F (t, x(t), x′(t)) a.e. on T,

x(0) = x(b), x′(0) = x′(b),

i.e. x ∈ C1(T ) is the desired solution of (2). �

In a similar fashion using the continuous selection argument of the proof of The-

orem 7 and Proposition 11, we can have the nonconvex variant of Theorem 12.
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Theorem 13. If hypotheses H(a)2, H(F)4, H(A)2 hold, then the problem (2) has
at least one solution x ∈ C1(T ).

Application 2. In the past even for single-valued problems there were no exis-
tence theorems for periodic equations with unilateral constraints (differential vari-

ational inequalities). So as an illustration that our work provides solutions where

the earlier literature fails, we consider a scalar differential variational inequality with

periodic boundary conditions. To this end let

ϕ(x) = δ $ +(x) =

{
0 if x ∈ # + ,

+∞ otherwise

and A = ∂ϕ. We know that domA = # + , A(x) = {0} if x > 0 and A(0) = # − . Also
let F = f : T× # × # → # be a single-valued Caratheodory function (i.e. measurable
in t ∈ T , continuous in x, y ∈ # ), which satisfies hypotheses H(F)3 (iii)–(v) (with F
replaced by f). Then the problem (2) becomes the following variational inequality:

(30)





(a(x(t))x′(t)) 6 f(t, x(t), x′(t)) a.e. on {t ∈ T : x(t) = 0},
(a(x(t))x′(t)) = f(t, x(t), x′(t)) a.e. on {t ∈ T : x(t) > 0},
x(t) > 0 for all t ∈ T, x(0) = x(b), x′(0) = x′(b).





Corollary 14. If A, f are as above and H(a)2 holds, then the problem (30) has
at least one solution x ∈ C1(T ).

The following functions f(t, x, y) satisfy the stated hypotheses:

f(t, x, y) = x3 −
√
|x| − h(t) + y

and

f(t, x, y) = x5 − ln |x| − sin y − h(t) with h ∈ L∞(T ).
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