Previous |  Up |  Next

Article

Keywords:
existence; positone problem; semipositone problem; singular delay differential equations
Summary:
In this paper we present some new existence results for singular positone and semipositone boundary value problems of second order delay differential equations. Throughout our nonlinearity may be singular in its dependent variable.
References:
[1] R. P.  Agarwal and D.  O’Regan: Semipositone Dirichlet boundary value problem with singular dependent nonlinearities. Houston J.  Math. 30 (2004), 297–308. MR 2048349
[2] R. P. Agarwal and D.  O’Regan: Existence theorem for single and multiple solutions to singular positone boundary value problems. J. Differential Equations 175 (2001), 393–414. DOI 10.1006/jdeq.2001.3975 | MR 1855974
[3] R. P.  Agarwal and D.  O’Regan: Singular boundary value problems for superlinear second ordinary and delay differential equations. J.  Differential Equations 130 (1996), 335–355. DOI 10.1006/jdeq.1996.0147 | MR 1410892
[4] L. E.  Bobisud: Behavior of solutions for a Robin problem. J. Differential Equations 85 (1990), 91–104. DOI 10.1016/0022-0396(90)90090-C | MR 1052329 | Zbl 0704.34033
[5] K.  Deimling: Nonlinear Functional Analysis. Springer-Verlag, , 1985. MR 0787404 | Zbl 0559.47040
[6] L. H. Erbe and Q.  Kong: Boundary value problems for singular second-order functional differential equations. J. Comput. Appl. Math. 53 (1994), 377–388. MR 1310254
[7] D. Q. Jiang and J. Y.  Wang: On boundary value problems for singular second-order functional differential equations. J. Comput. Appl. Math. 116 (2000), 231–241. MR 1750919
[8] D. Q. Jiang: Multiple positive solutions for boundary value problems of second-order delay differential equations. Appl.  Math. Letters 15 (2002), 575–583. DOI 10.1016/S0893-9659(02)80009-X | MR 1889507
[9] L.  Mengseng: On a fourth order eigenvalue problem. Advances Math. 29 (2000), 91–93. MR 1769132 | Zbl 1089.34511
[10] P. X. Weng and D. Q.  Jiang: Existence of positive solutions for boundary value problem of second-order FDE. Comput. Math. Appl. 37 (1999), 1–9. DOI 10.1016/S0898-1221(99)00120-0 | MR 1687996
Partner of
EuDML logo