[1] M. F. Atiyah and I. G. Macdonald: Introduction to Commutative Algebra. Addison-Wesly, Reading, 1969.
[2] F. Azarpanah:
On almost ${P}$-spaces. Far East J. Math. Sci, Special volume (2000), 121–132.
MR 1761076 |
Zbl 0954.54006
[3] F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad:
On $z^\circ $-ideals in $C(X)$. Fund. Math. 160 (1999), 15–25.
MR 1694400
[5] F. Dashiel, A. Hager and M. Henriksen:
Order-Cauchy completions and vector lattices of continuous functions. Canad. J. Math. XXXII (1980), 657–685.
DOI 10.4153/CJM-1980-052-0 |
MR 0586984
[7] L. Gillman and M. Jerison:
Rings of Continuous Functions. Springer-Verlag, New York-Heidelberg-Berlin, 1976.
MR 0407579
[9] M. Henriksen, J. Martinz and R. G. Woods:
Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal. International Conference on Applicable General Topology, Ankara, , , 2001.
MR 2026163
[11] M. A. Mulero:
Algebraic properties of rings of continuous functions. Fund. Math. 149 (1996), 55–66.
MR 1372357 |
Zbl 0840.54020
[12] A. I. Veksler:
$P^{\prime }$-points, $P^{\prime }$-sets, ${P}^{\prime }$-spaces. A new class of order-continuous measures and functionals. Sov. Math. Dokl. 14 (1973), 1445–1450.
MR 0341447 |
Zbl 0291.54046