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ON NONREGULAR IDEALS AND z◦-IDEALS IN C(X)
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Abstract. The spaces X in which every prime z◦-ideal of C(X) is either minimal or
maximal are characterized. By this characterization, it turns out that for a large class of
topological spaces X, such as metric spaces, basically disconnected spaces and one-point
compactifications of discrete spaces, every prime z◦-ideal in C(X) is either minimal or
maximal. We will also answer the following questions: When is every nonregular prime
ideal in C(X) a z◦-ideal? When is every nonregular (prime) z-ideal in C(X) a z◦-ideal?
For instance, we show that every nonregular prime ideal of C(X) is a z◦-ideal if and only if
X is a ∂-space (a space in which the boundary of any zeroset is contained in a zeroset with
empty interior).

Keywords: z◦-ideal, prime z-ideal, nonregular ideal, almost P -space, ∂-space, m-space
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1. Introduction

Important ideals concerning primes in C(X) are z-ideals. A special case of z-ideals
consisting entirely of zero divisors are z◦-ideals which play a fundamental role in

studying nonregular prime ideals. We will investigate the relations between ideals
consisting entirely of zero divisors, such as z◦-ideals, nonregular prime ideals, prime

z◦-ideals and so on. We will also characterize the topological spaces X for which
some of these ideals in C(X) coincide. In a commutative ring R, an ideal I consisting

entirely of zero divisors is called a nonregular ideal. For each a ∈ R, let Pa be the
intersection of all minimal prime ideals containing a. A proper ideal I is called a

z◦-ideal if for each a ∈ I we have Pa ⊆ I , see [3] and [4]. Clearly Pa itself is a
z◦-ideal. In C(X), the ideal Pf , f ∈ C(X) is both an algebraic and a topological
object which is presented in Propositions 2.2 and 2.3 in [2] as follows:

The first author is partially supported by Institute for Studies in Theoretical Physics
and Mathematics (IPM), Tehran.
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Proposition 1.1. For every f ∈ C(X), we have

Pf = {g ∈ C(X) : Ann(f) ⊆ Ann(g)} = {g ∈ C(X) : int Z(f) ⊆ int Z(g)}.

It is easy to see that an ideal I in C(X) is a z◦-ideal if and only if f ∈ I and

int Z(f) ⊆ int Z(g) imply that g ∈ I . For the other equivalent definitions of z◦-ideals
in C(X), see Proposition 2.2 in [3]. Important z◦-ideals in any ring are minimal prime
ideals. For every f ∈ C(X), Ann(f) and ∀x ∈ X , Ox are z◦-ideals in C(X). If S ⊆ X

is a regular closed set in X , i.e., if cl(int S) = S, then MS = {f ∈ C(X) : S ⊆ Z(f)}
is also a z◦-ideal in C(X). In particular, whenever Z(f) is regular closed, then
Mf = {g ∈ C(X) : Z(f) ⊆ Z(g)}, the intersection of all maximal ideals containing f ,

is a z◦-ideal. We recall that I is a z-ideal in a ring R if a ∈ I implies that Ma ⊆ I ,
where Ma is the intersection of all maximal ideals containing a. Equivalently, I is a

z-ideal in C(X) if f ∈ I and Z(f) ⊆ Z(g) imply that g ∈ I . It is easy to see that
every z◦-ideal is a z-ideal but not convesely, see [3], Remark 2.4.

Nonregular ideals and z◦-ideals are investigated in [3] and [4] in an arbitrary
reduced commutative rings and in C(X) and it is shown that every nonregular ideal
(in a reduced ring with some property, see [4] and in C(X), see [3]) is contained in
a z◦-ideal. We give a short proof for this result in C(X).

Proposition 1.2. If I is a nonregular ideal in C(X), then I is contained in a

z◦-ideal.
���������

. J =
∑
f∈I

Pf is a z◦-ideal and I ⊆ J . To see this, we note that each

element of J is a zero divisor, i.e., J is a proper ideal. Now let h = h1 + . . . + hn,
where hi ∈ Pfi , i = 1, 2, . . . , n; then h ∈ Pf , where f = f2

1 + . . . + f2
n, i.e., h ∈ J . �

The proof of the following proposition is similar to that of Theorem 14.7 in [7] and

hence we leave it to the reader, see also [3] and [4].

Proposition 1.3. If I is a z◦-ideal and P is a prime ideal in C(X) minimal over I ,
then P is also a z◦-ideal.

Corollary 1.4. Every nonregular ideal in C(X) is contained in a prime z◦-ideal.

In particular, every nonregular maximal ideal is z◦-ideal.

In [3], the spaces X in which every prime z◦-ideal in C(X) is minimal are inves-
tigated. By Proposition 1.26 and Theorem 1.28 in [4] and Corollary 5.5 in [8], the

equivalence of the first two parts of the following proposition is immediate.
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Proposition 1.5. The following statements are equivalent:

(i) Every prime z◦-ideal in C(X) is minimal.
(ii) For any zeroset Z in X there exists a zeroset F in X such that Z ∪ F = X and

int Z ∩ int F = ∅.
(iii) For any zeroset Z in X , cl(int Z) is the support of some zeroset in X , i.e., there

exists g ∈ C(X) such that cl(int Z(g) = cl(X \ Z(g).

���������
. (ii) ⇔ (iii) Suppose that ∀f ∈ C(X), ∃g ∈ C(X) such that

cl(int Z(f)) = cl(X \ Z(g)). Then cl(int Z(f)) = X \ int Z(g)) implies that
int Z(f)∩int Z(g) = ∅ and Z(f)∪Z(g) ⊇ Z(f)∪int Z(g) = Z(f)∪(X \cl(int Z(f)) ⊇
Z(f) ∪ (X \ Z(f)) = X . Conversely, suppose ∀f ∈ C(X), ∃g ∈ C(X) such that
Z(f) ∪ Z(g) = X and int Z(f) ∩ int Z(g) = ∅. Therefore int Z(f) ⊆ X \ int Z(g) =
cl(X \ Z(g)) ⊆ cl(int Z(f)) implies that cl(int Z(f)) ⊆ cl(X \ Z(g)) ⊆ cl(int Z(f))
and hence cl(int Z(f)) = cl(X \ Z(g)). �

By the above proposition, wheneverX is a metric space or a basically disconnected
space, then every prime z◦-ideal of C(X) is minimal. In this case, in fact for every
zeroset Z, F = X \ intZ is also a zeroset and clearly Z∪F = X and int Z∩ int F = ∅.
Existence of spaces X in which every prime z◦-ideal in C(X) is minimal or maximal
is shown in [3]. This kind of spaces are also investigated in [9] for prime z-ideals

in C(X). In [3], it is also shown that there exist spaces X with a prime z◦-ideal
in C(X) which is neither a minimal nor a maximal ideal. Our aim in Section 3 is
characterization of the spaces X in which every prime z◦-ideal in C(X) is either
minimal or maximal.

We observe that every z◦-ideal is a nonregular ideal, but every nonregular ideal
need not be even a z-ideal. Clearly the first natural question concerning nonregular

ideals, z-ideals and z◦-ideals in C(X) are as follows: When is every nonregular ideal
(z-ideal) a z◦-ideal? In [3], Proposition 2.12, it is shown that X is P -space if and only

if every nonregular ideal in C(X) is z◦-ideal. In [3], Theorem 2.14, it is also proved
that X is an almost P -space if and only if every z-ideal of C(X) is z◦-ideal. Now

there are three other natural questions which are not answered in [3]. We present
these questions as follows:

1. When is every nonregular z-ideal a z◦-ideal?

2. When is every nonregular prime z-ideal a z◦-ideal?

3. When is every nonregular prime ideal a z◦-ideal?

We are going to answer these questions in Section 4. It turns out that for any metric
space X , every nonregular prime ideal in C(X) is z◦-ideal. By our characterizations,

it is also easy to see that for the non-almost P -space Y =
{
0, 1, 1

2 , 1
3 . . .

}
, there is a

nonregular z-ideal in C(Y ) which is not a z◦-ideal.
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In the next section, we will study the extension of ideals of C∗(X) in C(X) for
later use. Throughout, X will denote a completely regular Hausdorff space and C(X)
(C∗(X)) is the ring of all (bounded) real valued continuous functions on X . Ideals
in C(X) and C∗(X) are considered proper ideals and we refer the readers to [3] and
[7] for undefined terms, notations and general information about C(X).

2. Extension of an ideal of C∗(X) in C(X)

In [11] Lemma 0.2, it is shown that C(X) is the ring of fractions of C∗(X) with
respect to the multiplicatively closed set S = {f ∈ C∗(X) : Z(f) = ∅}. In this
section we will investigate the extension of nonregular ideals of C∗(X) in C(X). The
extension of an ideal I of C∗(X) in C(X) is denoted by Ie = IC(X). For an ideal I
of C∗(X), we have Ie 6= C(X) if and only if I ∩ S = ∅. We denote Ie ∩ C∗(X)
by Iec and call an ideal I in C∗(X) with I ∩ S = ∅ is contracted if I = Iec. In

commutative rings, it is well-known that prime ideals, semiprime ideals and primary
ideals disjoint from S are contracted, see [1]. Since for every nonregular ideal I

in C∗(X), we have I ∩ S = ∅ and every z◦-ideal (minimal prime ideal) in C∗(X) is
a nonregular semiprime ideal, see [4], Remark 1.6, the following result is evident.

Proposition 2.1. z◦-ideals and minimal prime ideals of C∗(X) are contracted.

Proposition 2.2. If S−1R is the ring of fractions of a commutative ring R with

respect to a saturated multiplicatively closed set S ⊆ R, and S−1R\R has nonunits,

then each ideal I with I ∩ S = ∅ is contracted if and only if R = S−1R.
���������

. If R = S−1R, then we are through. Conversely, let a/s ∈ S−1R with
a/s /∈ R and also we may assume that a /∈ S. Now we must have (as)ec = (as). But
a = as/s shows that a ∈ (as)ec = (as), i.e., a = ast, t ∈ R. Hence a/s = at ∈ R,
which is impossible. �

Now the above fact implies the following corollary.

Corollary 2.3. Every ideal I in C∗(X) with I ∩ S = ∅ is contracted if and only
if X is pseudocompact. (Note that S = {f ∈ C∗(X) : Z(f) = ∅}.)

Proposition 2.4. Let I be an ideal in C∗(X) and suppose S = {f ∈ C∗(X) :
Z(f) = ∅}. Then the following statements hold.
(i) If I is a z◦-ideal, then Ie is also a z◦-ideal. Whenever I is contracted, the

converse is also true.

(ii) If I ∩ S = ∅ and I is prime, then Ie is. The converse is true if I is contracted.
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(iii) If I is a minimal prime ideal, then Ie is also a minimal prime ideal. The converse

is true if I is contracted.

(iv) If I is a nonregular prime ideal, then Ie is. The converse is true if I is contracted.

(v) If I ∩S = ∅ and I is maximal, then Ie is. The converse is true if I is contracted.
���������

. Parts (ii), (iii), (iv) and (v) are true in any commutative ring of
fractions. We will prove part (i) and for the other parts we refer the reader to [1]. If

I is a z◦-ideal, then it is contracted by Proposition 2.1 and hence I = Ie∩C∗(X). Let
f ∈ Ie, g ∈ C(X) and AnnC(X)(f) = AnnC(X)(g). Therefore AnnC∗(X)

(
f

1+|f |
)

=

AnnC∗(X)

(
g

1+|g|
)
and f

1+|f | ∈ I implies that g
1+|g| ∈ I , see Proposition 1.4 in [4].

Hence g ∈ Ie implies that Ie is a z◦-ideal in C(X). Conversely, let Ie be a z◦-ideal

in C(X), f ∈ I , g ∈ C∗(X) andAnnC∗(X)(f) = AnnC∗(X)(g). ClearlyAnnC(X)(f) =
AnnC(X)(g) and since f ∈ I ⊆ Ie, then g ∈ Ie ∩ C∗(X), implies that g ∈ I , i.e., I is

a z◦-ideal in C∗(X). �

3. Spaces X in which every prime z◦-ideal in C(X) is either
minimal or maximal

In Proposition 1.5, we observed that every prime z◦-ideal in C(X) is minimal
if and only if for every zeroset Z in X there exists a zeroset F in X such that
Z ∪ F = X and int Z ∩ int F = ∅. By Corollary 5.5 in [8], this is equivalent to
compactness of the space of minimal prime ideals of C(X). Let us call a space X

m-space if every prime z◦-ideal of C(X) is minimal. We will also call a space X

quasi m-space if every prime z◦-ideal of C(X) is either minimal or maximal. Clearly
every m-space is a quasi m-space, but a quasi m-space need not be an m-space, see

Examples 3.3. Our aim in this section is to recognize most of these spaces by a
topological characterization. To prove the main result of this section, we shall need

the following lemma.

Lemma 3.1. Let f ∈ C(X), then
∑

h∈Ann(f)

Pf2+h2 =
⋃

h∈Ann(f)

Pf2+h2 is a z◦-ideal

in C(X).
���������

. Clearly
⋃

h∈Ann(f)

Pf2+h2 ⊆ ∑
h∈Ann(f)

Pf2+h2 . Now we let

g ∈
∑

h∈Ann(f)

Pf2+h2 ,

then g = g1 + g2 + . . .+ gn, where gi ∈ Pf2+h2
i
for hi ∈ Ann(f) and i = 1, 2, . . . , n. If

we define h = h2
1 + . . . +h2

n, then h ∈ Ann(f) and int Z(f2 + h2) =
( n⋂

i=1

int Z(hi)
)
∩

401



int Z(f) ⊆
n⋂

i=1

int Z(gi) ⊆ int Z(g) imply that g ∈ Pf2+h2 by Proposition 1.1. This

means that
∑

h∈Ann(f)

Pf2+h2 ⊆ ∪h∈Ann(f)Pf2+h2 . Finally, since every Pf2+h2 is a

z◦-ideal, clearly
⋃

h∈Ann(f)

Pf2+h2 is also a z◦-ideal. �

Next we prove the main theorem of this section.

Theorem 3.2. The following statements are equivalent:
(i) X is quasi m-space.

(ii) ∀p ∈ βX and ∀f, g ∈ Mp, ∃h ∈ Ann(f) and k /∈ Mp such that Ann(f2 + h2) ⊆
Ann(gk).

(iii) ∀p ∈ βX and every two zerosets Z and F in X with p ∈ clβX Z ∩ clβX F , there

exist zerosetsZ ′ and F ′ such that Z∪Z ′ = X , p /∈ clβX F ′ and intX Z∩intX Z ′ ⊆
intX(F ∪ F ′).

���������
. The equivalence of parts (ii) and (iii) is evident by Lemma 2.1 in [3].

We will show that (i) and (ii) are equivalent. First suppose that (ii) holds and P is
a prime z◦-ideal, P ⊆ Mp for some p ∈ βX and P 6= Mp. Then ∃g ∈ Mp such

that g /∈ P . If P is not minimal, then ∃f ∈ C(X) such that (f, Ann(f)) ⊆ P . Now
by part (ii), ∃h ∈ Ann(f) and k /∈ Mp such that Ann(f2 + h2) ⊆ Ann(gk). Since
f2 + h2 ∈ P and P is z◦-ideal, then gk ∈ P (note that for u, v ∈ C(X), Ann(u) ⊆
Ann(v) if and only if int Z(u) ⊂ int Z(v), see also Proposition 2.2 in [3]). But k /∈ P ,

for k /∈ Mp, hence g ∈ P , a contradiction. Conversely, let every prime z◦-ideal
of C(X) be minimal or maximal. Assume that part (ii) does not hold; then ∃p ∈ βX

and ∃f, g ∈ Mp such that ∀h ∈ Ann(f) and k /∈ Mp, Ann(f2 + h2) 6⊂ Ann(gk).
Consider S = {gnk : k /∈ Mp, n = 0, 1, 2, . . .} and I =

⋃
h∈Ann(f)

Pf2+h2 . Obviously

S is closed under multiplication. We also have I ∩ S = ∅, for if gnk ∈ Pf2+h2 for
some n and h ∈ Ann(f), then by Proposition 1.1, Ann(f 2 + h2) ⊆ Ann(gk) which
is impossible by our hypothesis. So there exists a prime ideal P which I ⊆ P and
P ∩ S = ∅. We have already observed in Lemma 3.1 that I is a z◦-ideal and hence

by Proposition 1.3, P is also a z◦-ideal, for we may assume that P is minimal over I .
Now P ∩ S = ∅ and C(X) \Mp ⊆ S imply that P ⊆ Mp. On the other hand, since

(f, Ann(f)) ⊆ P , then P is not minimal and hence it must be maximal, i.e., P = M p.
This implies that g ∈ Mp = P , a contradiction. �

Examples 3.3. We observed in Section 1 that every metric space and every
basically disconnected space is an m-space and the space Σ (see [7], 4M for details)
is an m-space which is not metrizable. By the following proposition, βX is also

an m-space, whenever X is an m-space. In particular β � is an m-space. If X is
the one-point compactification of an uncountable discrete space, then X is a quasi
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m-space which is not anm-space. To see this, let p ∈ X be the only nonisolated point

of X , then ∀f ∈ Mp, X \ Z(f) is countable, for Z(f) is a Gδ-set. Since ∀f ∈ Mp,
int Z(f) 6= ∅, then Mp is a nonregular ideal and according to Corollary 1.4, Mp is a
z◦-ideal. On the other hand, Mp is not minimal, then X is not an m-space. Now we

show that X is a quasi m-space. Let f, g ∈ Mp, since X \ Z(g) is countable, then
Z(f)\Z(g) is also countable. We define h ∈ C(X) such that X \Z(h) = Z(f)\Z(g).
Hence h ∈ Ann(f) and Z(f2 + h2) ⊆ Z(g) implies that int Z(f2 + h2) ⊆ int Z(gk),
∀k ∈ C(X). Therefore by Theorem 3.2, X is a quasi m-space. For an example which
is not a quasi m-space, let D be the one-point compactification of an uncountable
discrete space X with the only nonisolated point δ. For every n ∈ � , suppose Dn is

a copy of D with nonisolated point δn. Let Y be the quotient space of the free union
∞⋃

n=1
Dn ∪ � by identifying each point 1

n with the point δn. Since � and Dn, ∀n ∈ �
are normal, clearly Y is also a normal space. To see that Y is not a quasi m-space,

suppose it is. Consider f, g ∈ C(Y ) where Z(f) =
∞⋃

n=1
Dn ∪ {0}, Z(g) = {0} and

there exists h ∈ Ann(f) and k /∈ M0 such that int Z(f)∩ int Z(h) ⊆ int[Z(g)∪Z(k)].
Since � \ {

1
n : n ∈ � }

⊆ Z(h), then � ⊆ cl
( � \ {

1
n : n ∈ � })

⊆ Z(h) and hence
{

1
n : n ∈ � }

⊆ int Z(h). On the other hand,
∞⋃

n=1
Dn ⊆ int Z(f) implies that

{
1
n : n ∈

� }
⊆ int Z(f)∩ int Z(h). Hence

{
1
n : n ∈ � }

⊆ Z(k) implies that 0 ∈ Z(k) which is
a contradiction. For another example which is not a quasi m-space, see [3].

By Proposition 2.4 and the fact that C(X) is a ring of fractions of C∗(X), the
following result is clear.

Proposition 3.4.
(i) X is an m-space if and only if βX is.

(ii) X is a quasi m-space if and only if βX is.

Remark 3.5. It is easy to check that X is basically disconnected if and only if

∀f ∈ C(X), ∃g ∈ C(X) such that int Z(f)∪int Z(g) = X and int Z(f) ∩ int Z(g) = ∅.
Therefore every basically disconnected space is an m-space and hence a quasi m-

space. Since every metric space is an m-space, not every m-space is basically discon-
nected.

Remark 3.6. A point p ∈ X is said to be an almost P -point if ∀f ∈ Mp,

intX Z(f) 6= ∅, and X is called an almost P -space if every point of X is an almost
P -point. Now if the compact space X has no almost P -point, then every maximal

ideal in C(X) is regular and hence C(X) has no maximal z◦-ideal. In fact, if X is a
quasi m-space but not an m-space, then X has at least one almost P -point.
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4. Nonregular ideals and z◦-ideals

In this section we are going to answer the questions which are mentioned in Sec-
tion 1. It is easy to see that a space X is an almost P -space if every zeroset in X

is a regular closed. We refer the reader to [2], [5], [10] and [12] for more details
and properties of almost P -spaces. Now we want to define a weak almost P -space,

namely w.almost P -space. A w.almost P -space is a topological space X in which for
every two zerosets Z and F , whenever int Z ⊆ int F , then there exists a zeroset E

in X with empty interior such that Z ⊆ F ∪ E. Clearly every almost P -space is

w.almost P -space, for if int Z ⊆ int F , then Z = cl(int Z) ⊆ cl(int F ) = F and hence
we consider E = ∅. But every w.almost P -space is not necessarily an almost P -space,
for example consider α � =

{
0, 1, 2, . . . , 1

n , . . .
}
. More generally, any space in which

every closed set (boundary of any zeroset) is contained in a zeroset with empty inte-

rior (for example a metric space) is a w.almost P -space. To see this let f, g ∈ C(X)
and int Z(f) ⊆ int Z(g). Then Z(f) \ Z(g) ⊆ Z(f) \ int Z(g) ⊆ Z(f) \ int Z(f) and
the closed set Z(f)\ intZ(f) is contained in a zeroset with empty interior, say Z(h).
Hence Z(f) \ Z(g) ⊆ Z(h) with int Z(h) = ∅ which implies that Z(f) ⊆ Z(gh),
i.e., X is a w.almost P -space.
To prove the first theorem of this section, we need the following lemma.

Lemma 4.1. If every zeroset inX with nonempty interior is open (regular closed),

then every zeroset in X is open (regular closed).
���������

. Let 0 6= f ∈ C(X); then ∃g ∈ C(X) such that int Z(g) 6= ∅ and
Z(f) ∩ Z(g) = ∅. First suppose that every zeroset with nonempty interior is open.
Since Z(g) and Z(fg) = Z(f)∪Z(g) are open sets, then Z(f) is also open, for Z(f)
and Z(g) are disjoint. Now let every zeroset with nonempty interior be regular
closed and suppose that Z(f) is not empty but int Z(f) = ∅. Since Z(f)∩Z(g) = ∅,
it is easy to see that int(Z(f) ∪ Z(g)) = int Z(g). Now we have Z(f) ∪ Z(g) =
Z(fg) = cl(int Z(fg)) = cl(int(Z(f) ∪ Z(g))) = cl(int Z(g)) = Z(g). This implies
that Z(f) ⊆ Z(g) which is impossible for Z(f) and Z(g) are disjoint. Therefore
int Z(f) 6= ∅ and hence Z(f) is also regular closed by our hypothesis. �

Theorem 4.2.
(i) Every nonregular z-ideal in C(X) is a z◦-ideal if and only if X is an almost

P -space.

(ii) Every nonregular prime z-ideal in C(X) is a z◦-ideal if and only if X is a

w.almost P -space.
���������

. (i) Let every nonregular z-ideal in C(X) be a z◦-ideal. By Lemma 4.1, it
is enough to show that every zeroset with nonempty interior is a regular closed. Hence
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suppose that f ∈ C(X) and int Z(f) 6= ∅. Since Mf is a nonregular z-ideal in C(X),
then by our hypothesis it is a z◦-ideal. Suppose that cl(int Z(f)) 6= Z(f), then ∃x ∈
Z(f)\cl(int Z(f)). Define h ∈ C(X) such that h(x) = 1 and h(cl(int Z(f)) = 0. Since
Z(h) does not contain Z(f), then h /∈ Mf , but int Z(f) ⊆ int Z(h), a contradiction
forMf is a z◦-ideal. Therefore Z(f) is a regular closed, i.e., X is an almost P -space.
Conversely, if X is an almost P -space, then every z-ideal in C(X) is a z◦-ideal;

see [3], Theorem 2.14.

(ii) First suppose that every nonregular prime z-ideal in C(X) is a z◦-ideal. To the

contrary, suppose that int Z(f) ⊆ int Z(g) and for every h ∈ C(X) with int Z(h) = ∅,
Z(gh) does not contain Z(f). Therefore gh /∈ Mf , ∀h ∈ C(X) with int Z(h) = ∅.
Now consider S = {gnh : int Z(h) = ∅, n = 0, 1, . . .}. Clearly S is closed under
multiplication and Mf ∩ S = ∅, for Mf is a z-ideal and Z(gnh) = Z(gh), ∀n ∈ � .
Now by Theorem 14.7 in [7], there exists a prime z-ideal P such that Mf ⊆ P and
P ∩ S = ∅. P ∩ S = ∅ implies that P is also a nonregular ideal and hence by our

hypothesis, P must be a z◦-ideal. But int Z(f) ⊆ int Z(g), f ∈ P and g /∈ P , a
contradiction. Conversely, let X be a w.almost P -space, P be a nonregular z-ideal

in C(X), int Z(f) ⊆ int Z(g) and f ∈ P . By our hypothesis, ∃h ∈ C(X) with
int Z(h) = ∅ and Z(f) ⊆ Z(gh). Since P is a z-ideal, then gh ∈ P . But h /∈ P , for h

is not a zero divisor, hence g ∈ P , i.e., P is a z◦-ideal. �

Corollary 4.3. X is a w.almost P -space if and only if ∀f, g ∈ C(X), whenever
int Z(f) = int Z(g), then there exists a regular h ∈ C(X) such that Z(fh) = Z(gh).

���������
. Let X be a w.almost P -space and int Z(f) = int Z(g); then by the

above theorem, there exist regular functions h, k ∈ C(X) such that Z(f) ⊆ Z(gk)
and Z(g) ⊆ Z(fh). Hence Z(fhk) ⊆ Z(ghk) ⊆ Z(fhk), i.e., Z(fhk) = Z(ghk),
where hk is regular. Conversely, if int Z(f) ⊆ int Z(g), then int Z(f) = int Z(f 2+g2)
implies that Z(fh) = Z((f2 + g2)h) for some regular h ∈ C(X) and hence Z(f) ⊆
Z(fh) = Z((f2 + g2)h) ⊆ Z(gh), i.e., X is a w.almost P -space. �

Next we prove the main theorem of this section.

First, let us call the space X a ∂-space if the boundary of any zeroset in X

is contained in a zeroset with empty interior. The class of topological ∂-spaces
includes metric spaces and more generally, the perfectly normal spaces. We have

already shown that every ∂-space X is a w.almost P -space; see the introduction of
Section 4. But every w.almost P -space, even every (compact) almost P -space is

not necessarily a ∂-space. For example let X be an uncountable discrete space and
Y = X ∪ {p} be the one-point compactification of the space X . Then clearly Y is

an almost P -space, but ∀f ∈ C(Y ) with f(p) = 0 and infinite cozeroset, we have
∂Z(f) = Z(f) \ int Z(f) = {p} which is not contained in a zeroset in Y with empty
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interior; i.e., Y is not a ∂-space. More generally, it is easy to see that the space X

is an almost P -space and a ∂-space if and only if X is P -space. This shows that
there are almost P -spaces which are not ∂-spaces and there are ∂-spaces which are
not almost P -spaces. �

Theorem 4.4. Every nonregular prime ideal of C(X) is a z◦-ideal if and only if

X is a ∂-space.

���������
. We first suppose that there exists f ∈ C(X) such that ∂Z(f) =

Z(f) \ int Z(f) is not contained in a zeroset in X with empty interior. We will show

that there is a nonregular prime ideal in C(X) which is not even a z-ideal. To see
this, let l ∈ C( � ) be such that Z(l) = {0} and lim

x→0
ln(x)/x = ∞, ∀n ∈ � ; see [7], 2G.

Now consider S = {hln ◦ f : int Z(h) = ∅, n = 0, 1, 2, . . .} and I = (f); note that
l0 ◦ f = 1. Clearly S is closed under multiplication and S ∩ I = ∅, for otherwise if
S ∩ I 6= ∅, then hln ◦ f = kf , for some k ∈ C(X) and n 6= 0. (In the case n = 0
we have int Z(f) = ∅ and ∂Z(f) = Z(f) which contradicts our hypothesis). By our
hypothesis, there exists x ∈ Z(f) \ int Z(f) such that x /∈ Z(h). Now let (xα) be a
net in X \ (Z(f) ∪ Z(h)) such that xα −→ x. This shows that

k(xα) = h(xα)
ln(f(xα))

f(xα)
−→ ∞

which contradicts the continuity of k at x. Hence S ∩ I = ∅ and therefore there
exists a prime ideal P such that P ∩ S = ∅ and I = (f) ⊆ P . Since S contains

all non-zero divisors of C(X), then P is a nonregular prime ideal. On the other
hand l ◦ f /∈ P , Z(l ◦ f) = Z(f) and f ∈ P which imply that P is not a z-ideal.

Conversely suppose that X is a ∂-space and let P be a nonregular prime ideal
in C(X), int Z(f) = int Z(g) and f ∈ P . Since X is a ∂-space, then there exists

a nonzerodivisor h ∈ C(X) such that ∂Z(f) ⊆ Z(h) and ∂Z(fg) ⊆ Z(h). Now we
define k(x) = h(x)f(x), ∀x ∈ Coz(fg) and k(x) = h(x), ∀x ∈ Z(fg). Obviously k is

continuous on Coz(fg) and on int Z(fg) and it is not hard to show that k is also
continuous on ∂Z(fg) ⊆ Z(h). We show that fgh = kg. For x /∈ Z(fg), we have
k = fh and equality holds. Now suppose that x ∈ Z(fg) = Z(f)∪Z(g). If x ∈ Z(g),
then (fgh)(x) = (kg)(x) = 0 and if x ∈ Z(f), then either x ∈ int Z(f) = int Z(g)
which again (fgh)(x) = (kg)(x) = 0 or x ∈ ∂Z(f) which implies that x ∈ Z(h)
and hence (fgh)(x) = (kg)(x) = 0. Therefore fgh = kg and then gk ∈ P . But
int Z(k) = ∅ implies that k /∈ P and consequently g ∈ P , i.e., P is a z◦-ideal. �
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Corollary 4.5. The only nonregular prime ideals of C(X) are minimal prime
ideals if and only if X is a ∂-space and an m-space.

By Proposition 2.4, the following corollary is evident.

Corollary 4.6. X is a ∂-space if and only if βX is.
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