[1] S. D. Berman:
Group algebras of countable abelian $p$-groups. Publ. Math. 14 (1967), 365–405. (Russian)
MR 0225897 |
Zbl 0178.02702
[2] A. A. Bovdi and S. V. Mihovski:
Idempotents in crossed products. Bull. Institut Math. Acad. Bulgaria 13 (1972), 247–263. (Russian)
MR 0439917
[3] A. A. Bovdi and Z. F. Pataj: On the construction of the centre of a multiplicative group of the group ring of the $p$-groups over a ring of characteristic $p$. Proc. Bielorus. Acad. Sci. 1 (1978), 5–11. (Russian)
[4] L. Fuchs: Infinite Abelian Groups, Vol. 1. Publishing House World, Moscow, 1977. (Russian)
[5] T. Zh. Mollov:
On the unit groups of the modular group algebras of primary abelian groups of an arbitrary cardinality I. Publ. Math. Debrecen 18 (1971), 9–21. (Russian)
MR 0311779
[6] T. Zh. Mollov:
Ulm invariants of the Sylow $p$-subgroups of the group algebras of the abelian groups over a field of characteristic $p$. Sixth Congress of the Bulgarian Mathematicians, Varna, 1977, Reports Abstracts, Section A2, p. 2. (Bulgarian)
MR 0633857
[7] T. Zh. Mollov:
Ulm invariants of the Sylow $p$-subgroups of the group algebras of the abelian groups over a field of characteristic $p$. Pliska 2 (1981), 77–82. (Russian)
MR 0633857
[8] T. Zh. Mollov and N. A. Nachev: Some set theoretic properties of the radical of Baer of commutative rings of prime characteristic. Plovdiv University “P. Hilendarsky”, Scientific works 15, book 1 (1977). (Russian)
[9] T. Zh. Mollov and N. A. Nachev:
On the semisimple twisted group algebras of primary cyclic groups. Houston J. Math. 25 (2000), 55–66.
MR 1814727
[10] N. A. Nachev:
Invariants of the Sylow $p$-subgroup of the unit group of commutative group ring of characteristic $p$. Comm. Algebra 23 (1995), 2469–2489.
DOI 10.1080/00927879508825355 |
MR 1330795
[11] N. A. Nachev and T. Zh. Mollov:
Ulm-Kaplansky invariants of the groups of normalized units of the modular group ring of a primary abelian group. Serdica 6 (1980), 258–263. (Russian)
MR 0608404
[12] N. A. Nachev and T. Zh. Mollov:
Sylow $p$-subgroups of commutative twisted group algebras of the finite abelian $p$-groups. Serdica 14 (1988), 161–178. (Russian)
MR 0949198
[13] N. A. Nachev and T. Zh. Mollov:
Semisimple twisted group algebras of cyclic $p$-groups of odd order. Publ. Math. Debrecen 37 (1990), 55–64. (Russian)
MR 1063657
[14] D. S. Passman:
The Algebraic Structure of Group Rings. Wiley-Interscience, New York, 1977.
MR 0470211 |
Zbl 0368.16003