Previous |  Up |  Next

Article

Keywords:
fuzzy points; $Q$-neighborhoods; fuzzy filters; fuzzy nets; limit; adherent and $Q$-adherent points of fuzzy filters and fuzzy nets; fuzzy continuity; strong $Q$-compactness
Summary:
In this paper we introduce and study new concepts of convergence and adherent points for fuzzy filters and fuzzy nets in the light of the $Q$-relation and the $Q$-neighborhood of fuzzy points due to Pu and Liu [28]. As applications of these concepts we give several new characterizations of the closure of fuzzy sets, fuzzy Hausdorff spaces, fuzzy continuous mappings and strong $Q$-compactness. We show that there is a relation between the convergence of fuzzy filters and the convergence of fuzzy nets similar to the one which exists between the convergence of filters and the convergence of nets in topological spaces.
References:
[1] R. G.  Bartle: Nets and filters in topology. Amer. Math. Monthly 62 (1955), 551–557. DOI 10.2307/2307247 | MR 0073153 | Zbl 0065.37901
[2] R.  Bělohlávek: Fuzzy Relational Systems: Fundations and Principles. Kluwer, New York, 2002.
[3] G.  Birkhoff: Moore-Smith convergence in general topology. Ann. Math. 38 (1937), 39–56. DOI 10.2307/1968508 | MR 1503323 | Zbl 0016.08502
[4] N.  Bourbaki: Topologie Generale, Ch. 1. Actualites Sci. Indust., Paris 858, 1940.
[5] H.  Cartan: Théorie des filtres. C.  R.  Acad. Sci. Paris 205 (1937), 595–598. Zbl 0017.24305
[6] C. L. Chang: Fuzzy topological spaces. J.  Math. Anal. Appl. 24 (1968), 182–190. DOI 10.1016/0022-247X(68)90057-7 | MR 0236859 | Zbl 0167.51001
[7] Hu Cheng-Ming: Theory of convergence in fuzzy topological spaces. J.  Fuzzy Math. 1 (1993), 1–12. MR 1230301
[8] A.  Choubey and A. K.  Srivastava: On $\alpha $-compact fuzzy topological spaces. J.  Fuzzy Math. 1 (1993), 321–326. MR 1230323
[9] P.  Eklund and W.  Gähler: Fuzzy filter functors and convergence. Applictions of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht-Boston-London, 1992, pp. 109–136. MR 1154570
[10] W.  Gähler: Convergence. Fuzzy Sets and Systems 73 (1995), 97–129.
[11] W.  Gähler: The general fuzzy filter approach to fuzzy topology. Part I. Fuzzy Sets and Systems 76 (1995), 205–224. MR 1365392
[12] W.  Gähler: The general fuzzy filter approach to fuzzy topology. Part II. Fuzzy Sets and Systems 76 (1995), 225–246. DOI 10.1016/0165-0114(95)00057-R
[13] Wang Guojun: A new fuzzy compactness defined by fuzzy nets. J.  Math. Anal. Appl. 94 (1983), 1–23. DOI 10.1016/0022-247X(83)90002-1 | MR 0701446 | Zbl 0512.54006
[14] A.  Kandil, E.  Kerre, A.  Nouh and M. E.  El-Shafei: Generalized mappings between fuzzy topological spaces. Math. Pannon. 31 (1992), 59–71. MR 1240878
[15] J. L.  Kelley: General Topology. Van Nostrand, New York, 1955. MR 0070144 | Zbl 0066.16604
[16] E. E.  Kerre, A. A.  Nouh and A.  Kandil: Generalized compactness in fuzzy topological spaces. Math. Vesnik 43 (1991), 29–40. MR 1210258
[17] E. E.  Kerre, A. A.  Nouh and A.  Kandil: Operations on the class of all fuzzy sets on a universe endowed with a fuzzy topology. J.  Math. Anal. Appl. 180 (1993), 325–341. DOI 10.1006/jmaa.1993.1404 | MR 1251863
[18] G. J.  Klir and B.  Yuah: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Perentice Hall, , 1995, pp. 574. MR 1329731
[19] R.  Lowen: Initial and final fuzzy topologies and the fuzzy Tychonoff theorem. J.  Math. Anal. Appl. 58 (1977), 11–21. DOI 10.1016/0022-247X(77)90223-2 | MR 0440483 | Zbl 0347.54002
[20] R.  Lowen: Convergence in fuzzy topological spaces. Gen. Topol. Appl. 10 (1979), 147–160. DOI 10.1016/0016-660X(79)90004-7 | MR 0527841 | Zbl 0409.54008
[21] R.  Lowen: The relation between filter and net convergence in fuzzy topological spaces. Fuzzy Math. 3 (1983), 41–52. MR 0743505 | Zbl 0569.54007
[22] M.  Macho Stadler and M. A.  De Prada Vicente: Fuzzy $t$-net theory. Fuzzy Sets and Systems 37 (1990), 225–235. DOI 10.1016/0165-0114(90)90045-8 | MR 1074667
[23] M.  Macho Stadler and M. A.  De Prada Vicente: On $N$-convergence of fuzzy nets. Fuzzy Sets and Systems 51 (1992), 203–217. DOI 10.1016/0165-0114(92)90193-8 | MR 1188312
[24] M.  Macho Stadler and M. A.  De Prada Vicente: $t^*$-fuzzy topological concepts. Portugaliae Math. 49 (1992), 85–108. MR 1165924
[25] E. H.  Moore and H. L.  Smith: A general theory of limits. Amer. J.  Math. 44 (1922), 102–121. DOI 10.2307/2370388 | MR 1506463
[26] M. A.  De Prada Vicente and M. S.  Aranguren: Fuzzy filters. J. Math. Anal. Appl. 129 (1988), 560–568. DOI 10.1016/0022-247X(88)90271-5 | MR 0924310
[27] M. A.  De Prada Vicente and M. M.  Stadler: $t$-prefilter theory. Fuzzy Sets and Systems 38 (1990), 115–124. MR 1078725
[28] Pu Pao-Ming and Liu Ying-Ming: Fuzzy topology  I. J.  Math. Anal. Appl. 76 (1980), 571–599. MR 0587361
[29] Pu Pao-Ming and Liu Ying-Ming: Fuzzy topology  II. J.  Math. Anal. Appl. 77 (1980), 20–37. MR 0591259
[30] R. V.  Sarma and N.  Ajmal: Fuzzy nets and their application. Fuzzy Sets and Systems 51 (1992), 41–51. DOI 10.1016/0165-0114(92)90074-E | MR 1187370
[31] Lee Bu Yong, Park Jin Han and Park Bae Hun: Fuzzy convergence structures. Fuzzy Sets and Systems 56 (1993), 309–315. DOI 10.1016/0165-0114(93)90211-Y | MR 1227900
[32] L. A.  Zadeh: Fuzzy sets. Information and Control 8 (1965), 338–353. DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
[33] Li Zhongfu: Compactness in fuzzy topological spaces. Kuxue Tongbao 29 (1984), 582–585. MR 0834292 | Zbl 0576.54008
Partner of
EuDML logo