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Abstract. In this paper we introduce and study new concepts of convergence and adherent
points for fuzzy filters and fuzzy nets in the light of the Q-relation and the QQ-neighborhood
of fuzzy points due to Pu and Liu [28]. As applications of these concepts we give several
new characterizations of the closure of fuzzy sets, fuzzy Hausdorff spaces, fuzzy continuous
mappings and strong @-compactness. We show that there is a relation between the con-
vergence of fuzzy filters and the convergence of fuzzy nets similar to the one which exists
between the convergence of filters and the convergence of nets in topological spaces.
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1. INTRODUCTION

The notion of convergence is one of the basic notion in analysis. There are two
different convergence theories used in general topology that lead to equivalent re-
sults. One of them is based on the notion of a net from 1922 due to Moore and
Smith [25]; another one, which goes back to the work of Cartan [5] in 1937 and
Bourbaki [4] in 1940, is based on the notion of a filter. In 1955 Bartle [1] studied the
relation between filters and nets convergence theories, and he proved that they are
equivalent. In 1979 Lowen [20] introduced and studied the theory of convergence for
fuzzy filters (prefilters) in fuzzy topological spaces and applied the results to describe
fuzzy compactness and fuzzy continuity. This was followed by an extensive study of
the convergence theory of fuzzy filters in fuzzy topological spaces by several authors
[7], [9)-[12], [21], [22], [26], [27], [31] from different standpoints. However, the con-
cepts of @-relation and @Q-neighborhood of fuzzy points have not been used in these
approaches. In 1980 Pu and Liu [28], by means of the concept of a Q-neighborhood
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of a fuzzy point in a fuzzy topological space, gave the notion of convergence for fuzzy
nets. The relationship between the two types of convergence was studied by Lowen
in [21]. This was also followed by an extensive study of the convergence theory
in fuzzy topological spaces by several authors [7], [8], [13], [21]-[24], [28]-[30] from
different standpoints. In this paper, we will give new concepts of convergence and
adherence for fuzzy filters (prefilters in the sense of Lowen [20]) and fuzzy nets in
fuzzy topological spaces. These concepts depend on the notions of @-relation and
Q-neighborhood of a fuzzy point given by Liu and Pu [28], as these concepts seem
to be extremely suitable for the fuzzy situation. Then several characterizations of
some fuzzy topological concepts, namely: the closure of a fuzzy set, fuzzy Hausdorff
spaces, fuzzy continuous mappings and strong ()-compactness are given by means of
convergence of fuzzy filters and fuzzy nets. Finally, we show that there is a relation
between the convergence of fuzzy nets and the convergence of fuzzy filters similar to
the one which exists between the convegence of nets and filters in topological spaces.

2. PRELIMINARIES

Let X be an arbitrary nonempty set. A fuzzy set in X is a mapping from X to the
closed unit interval I = [0, 1], that is, an element of IX. A fuzzy point (singleton) x,
is a fuzzy set in X defined by z,(z) = a and z,(y) = 0 for all y # x, whose support
is the single point  and whose value is « € (0, 1]. We denote by FP(X) the collection
of all fuzzy points in X. A family &/ C IX is said to have finite intersection property
(FIP, for short) if any finite intersection of elements of 2 is nonempty.

Throughout this paper X, Y, Z, etc. denote ordinary sets while u, n, A, o,
etc. denote fuzzy sets defined on an ordinary set. For A C X, by 14 we mean the
characteristic mapping of X to {0,1}. Also, we use F' to denote fuzzy and fts to
denote a fuzzy topological space. The fuzzy set theoretical and fuzzy topological
concepts used in this paper are standard and can be found in Zadeh [32], Klir and
Yuah [18], Chang [6], Belohlavek [2], Lowen [19] and Pu and Liu [28]. However, we
feel it necessary to fix some notions and recall a few concepts from [2], [6], [17], [18],
[20], [28], [30], [32].

Definition 2.1 [18], [32]. Let u,n € I’*. We define the following fuzzy sets:
(i) pAneIX, by (uAn)(x) =min{u(z),n(z)} for each z € X (intersection).
(i) pvneIX by (uVn)(r)=max{u(x),n(z)} for each x € X (union).
(iii) u¢ € I, by u(x) = 1 — u(x) for each x € X (complement).
Definition 2.2 [17]. Let u € IX. We define the following crisp subsets:
(1) pwa ={z € X: p(z) = a}, the weak a-cut of u, o € (0,1].
(i) supp(u) = {z € X: p(z) > 0}, the support of u.
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Definition 2.3 [6]. Let 7 C IX satisfy the following three conditions:

i) X,0er.
(ii) If py, po € 7, then py A ps € 7.
(i) If {p;: jeJ} C7,then \ p; €.

jed

Then 7 is called a fuzzy topology on X and (X, 7) is called a fuzzy topological space
(fts, for short). The elements of 7 are called open fuzzy sets. A fuzzy set is called
a closed fuzzy set if u¢ € 7. We denote by 7’ the collection of all closed fuzzy sets
in X.

One may easily verify the following example.

Example 2.4. Let (X,T) be a topological space, € IX and A C X. Then:
(i) The classes 71 = {X,0}, 7o = IX, 73 = {u € IX: supp(p) € T} and 74 =
{1a: A €T} are fuzzy topologies on X.
(ii) If X is an infinite set, then the class 7o, = {u € I*: supp(u¢) is finite set} Vv {0}
is a fuzzy topology on X; the so-called co-finite fuzzy topology on X.

Definition 2.5 [28]. Let (X,7) be a fts and u, 0 € I’X. Then:
(i) p is called a quasi-coincident with g, denoted by uqo, if there exists z € X such

that u(x) 4+ o(z) > 1. If p is not quasi-coincident with g, then we write ugo.

(i) p is called @-neighborhood of a fuzzy point z, € FP(X) if there exists an open
fuzzy set n € 7 such that x,qn and n < p. The class of all open Q-neighborhoods
of x, is denoted by NSQ.

(iii) o is called a Q,-neighborhood of a fuzzy set p iff ¢ is a Q-neighborhood of
each fuzzy point x, < p. The class of all open @Q,-neighborhoods of p will be
denoted by Nﬁ?a.

Definition 2.6 [2], [28]. Let (X,7) be a fts, o, € FP(X) and u € IX. The
closure of y, denoted by cl(y), is defined by: z < cl(u) iff (Vn € N )(ngu). The
fuzzy set p is closed if u = cl(w).

Theorem 2.7 [28]. Let (X, 7) be a fts and y € IX. Then:
(i) p is open iff (Vxaqu)(3n € N2 )(n < p).
(ii) For each n € T, nqu iff ngcl(u).

Definition 2.8 [28]. A fts (X, 7) is called a fuzzy Hausdorff space (FT;, for
short) iff (Vac,y, € FP(X),z #y)(3p e N2)3n e N2)(uAn=0).
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3. NEW CONVERGENCE THEORY OF FUZZY FILTERS

In this section we will introduce and study the notions of convergence, adherence
and @Q-adherence for fuzzy filters and filter bases in fuzzy topological spaces by means
of the concept of a @-neighborhood of a fuzzy point given by Liu and Pu [28]. This
will enable us to give some results about fuzzy Hausdorff spaces [18], [28], closure of
a fuzzy set [18], [28], fuzzy continuity [14], [28] and about strong Q-compactness [33],
similar to the ones which hold in topological spaces.

Definition 3.1 [20]. A fuzzy filter on X is a nonempty subset .# C I¥ such
that

i) 0¢ .7
(i) If p € F and p < 0, then n € Z.
(iil) If py, po € F, then uy Az € Z.

The class of all fuzzy filters on X will be denoted by FL(I*).

Definition 3.2 [20]. A fuzzy filter base on X is a nonempty subset 8 C IX such
that:

(i) 0¢p.
(ii) If py, po € B, then s € B such that pg < py A poe.

The class of all fuzzy filter bases on X will be denoted by FLB(I%).

The fuzzy filter .# generated by 3 is defined by .% = {u € IX: 1 < u for some 7 €
(4} and is denoted by (). A collection 3 of subsets of .Z is a base for # if for each
u € F there is n € 8 such that n < pu.

Definition 3.3 [20]. Let .#,# € FL(IX) (or FLB(IX)). Then we say that
F is finer than ¢, written as 7 < F, if (Vu € ) (3o € F)(o < p).

Definition 3.4 [20]. Let X be a nonempty set. Then:
(i) A fuzzy filter .# on X is called a prime if for all u,n € IX, 4V n € .# implies
that either p € & orn e #.
(ii) A fuzzy filter % on X is called a maximal fuzzy filter on X iff .7 is finer than
every fuzzy filter comparable with it.
(iii) A fuzzy filter base 5 on X is called a maximal fuzzy filter base on X if it is a
base for a maximal fuzzy filter on X.
(iv) A subfamily ¢ of fuzzy filter % on X is said to be a subbase for .# if the
family of all finite intersections of members of £ is a base for .%. We say that &
generates 7.

If 2(.7) denotes the family of all prime fuzzy filters finer than %, then it is easy

to verify that # = (| Z.
PeP(F)
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The class of all maximal fuzzy filters and maximal fuzzy filter bases on X will be
denoted by MFL(I¥) and MFLB(I*), respectively.

Theorem 3.5. If % is a nonempty family of fuzzy subsets of X having the FIP,
then there exists a fuzzy filter base on X containing € .

Proof. Similar to the proof of the corresponding one in the crisp case [15]. O

Theorem 3.6. Let £ be a family of nonempty fuzzy subsets of X which has FIP.
Then there exists a fuzzy filter % on X having £ as a subbase iff £ has FIP.

Proof. Follows immediately from Definition 3.4 (iv) and Theorem 3.5. O

Theorem 3.7 [31]. For an .# € MFL(IX), the following statements are true:
(i) F is a prime fuzzy filter.
(ii) For every u € IX, either p € F or1 —p e 7.
(iii) Let u € IX. If u ¢ F, then there is o € F such that u A o = 0.

Theorem 3.8 [26]. Let f: X — Y be a mapping.
(i) If B is a fuzzy filter base on X, then so is f(3) = {f(A\): A€ 8} onY.
(ii) If B is a fuzzy filter base on Y and f is onto, then f=1(8) = {f~*(\): X € 8}
is a fuzzy filter base on X.

For further details on fuzzy filters and related concepts, see [20], [26].

Definition 3.9. A fuzzy filter (filter base) .# on X is called:
(i) an upper fuzzy filter (filter base) on X if for every A € .#, A(z) > 1 for some
r € X;
(ii) on € I if A\A p # 0 for each \ € 7.

Definition 3.10. A fuzzy filter (filter base) .7 in a fts (X, 7) is said to be:

(i) convergent to a fuzzy point z,, denoted by F — z,, iff (Vn € NIQQ) (Jo €
F)(0 <n). The limit of a fuzzy filter base .# is defined by lim(.%) = \/{z, €
FP(X): .F — x4}

(ii) convergent to a fuzzy set u, denoted by .# — p, iff for each open Q,-cover Z
of p (see Definition 3.26 below), there exist a finite subcollection % of % and
an A € Z such that A < \/{n: n€ %}.

Definition 3.11. Let (X,7) be a fts and .Z a fuzzy filter (filter base) on X. A
fuzzy point z, is said to be an adherent (Q-adherent) point for a fuzzy filter (filter

base) .Z, denoted by ¥ x z, (F & o), iff for all n € N and for all p € .F
we have 9 An # (0 (ogn). The adherence and @Q-adherence of the fuzzy filter (filter
base) .# is defined by adh(%) = \/{zn € FP(X): ¥F x z,} and Q-adh(F) =
V{zo e FP(X): F# & Zo }, TESpectively.
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The proof of the following result is straightforward and therefore it is omitted.

Theorem 3.12. Let (X,7) be a fts and . € FL(IX) (or FLB(IX)). Then
(i) N& is a fuzzy filter (filter base) on X and N8 — xz,.
(i) F — zq iff vo <lim(F) iff N& < Z.

(ili) F o 20 (F & a) iff 4 < adh(F) (2o < Q-adh(F)).
)

(iv) im(%#) < adh(.#) and Q-adh(F) < adh(.F) but lim(#) £ Q-adh(F). If F is
an upper fuzzy filter (filter base), then lim(.#) < Q-adh(%).

(v) If F < .Z*, then lim(%) < lim(%*), adh(F# ) < adh(&#) and Q-adh(F*) <
Q-adh(Z).

(vi) If # — p, then NQQ
(vil) If F — x4 (F X 24,

x,, respectively).

, Where N Qo jg a fuzzy filter base on X .

o

F
F x xa) and if v < «, then & — z, (¥ x ©,, F g(
(viii) If # — x, and x,, < p, then F — p.

(ix) If # < #* and .F — p, then F* — p.

(x) If B is a base for a fuzzy filter F on X, then § — x4 (8 X x4, B 9 To, B — 1)

iff F - xy (F Xxo, F é?( Zo, F — U, respectively).

Theorem 3.13. Let (X,7) be a fts. The fuzzy point x,, is an adherent point
for a fuzzy filter base 0 on X iff there exists a fuzzy filter base 3* on X finer than (3

and converging to x.

Proof. If z, is an adherent point of 3, then (V1 € N2 )(Vo € B)(o An # 0).
Then the family ¢ = 3 \/Ng?a forms a subbase for some fuzzy filter base * on X finer
than 8 and #* — z,. Conversely, if there exists a fuzzy filter base §* on X finer
than § and 8* — z,, then by Theorem 3.12 (iv), 8* « 2, and so by Theorem 3.12 (v),
f—= Za. O

Theorem 3.14. Let (X,7) be a fts and 8 an upper fuzzy filter base on X.
A fuzzy point x,, is a Q-adherent point for  iff there exists an upper fuzzy filter
base * on X finer than (3 and converging to x,.

Proof. It is similar to that of Theorem 3.13 taking into consideration that g
and [B* are upper fuzzy filter bases. O

Theorem 3.15. Let (X,7) be a fts, v, € FP(X) and p € IX. Then z, < cl(p)
iff there exists a fuzzy ﬁlter on X with & — x4 and pqu for each o € F

Proof. Let zo < cl(u). Then pgn for each n € NQ. So it suffices to take
= NzQa . Conversely, let .# — x,, and pqu for each g € .. Then N Q < & and so
Zo < cl(p). O
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Theorem 3.16. Let (X,7) be a fts and u € IX. Then yu is open iff p is a
member of each fuzzy filter on X converging to a fuzzy point quasi-concident with p.

Proof. Suppose that u € IX is open and let .# be an arbitrary fuzzy filter
on X converging to z, and z,qu. Since p € Na?a, there exists A € .% such that
A < p. Hence p € #. Conversely, for each x,qu we consider # = Ng?a. Then
uwe Ng?a for each x,qu and so u € 7. [

The set of fuzzy points to which a fuzzy filter converges is, in general, infinite.
But if we put certain restrictions on the supports, we can obtain a result concerning

the uniqueness of convergence.

Theorem 3.17. A fts (X, 7) is FTs iff no fuzzy filter % on X converges to two
fuzzy points with different supports.

Proof. Let (X, 7)beanFTs-space and .% a fuzzy filter on X such that % — z,
and y, such that z # y. Since F — z,, we have (Vu € N&)(Fo1 € F)(01 < p).
Also, since . — y,, we have (V1 € NyQa)(E 02 € F)(02 < n). Since p1, 02 € F, then
03 = 01 AN o2 € .Z such that 93 < pAn and so uAn # ), a contradiction. Conversely,
suppose that no fuzzy filter % on X converges to two fuzzy points with different
supports and (X, ) is not an FTs-space, then (Vu € N2 )(Vn € N2 )(uAn#0).
Then it is easy to verify that the family 6 = {uAn: p € Ng?a and n € Ny%} is
a fuzzy filter base on X converging to both z, and y,. Let & = (8). Then by
Theorem 3.12 (x), .% converges to both z, and y,, a contradiction. O

Theorem 3.18. Let (X, 7) be a fts and let .¥ be a fuzzy filter on X. Then:
(i) im(.%), adh(#) and Q-adh(%) are closed fuzzy sets.
(i) If & is a maximal fuzzy filter, then lim(.%) = adh(%).
(i) If & is a maximal upper fuzzy filter, then lim(.%) = Q-adh(%).

Proof. (i) Since lim(#) < cl(lim(%)) it suffices to show that cl(lim(.%)) <
lim(.#). Let z, < cl(lim(#)) and n € N&. Then nglim(#) and so there exists
y € X such that n(y) + lim(Z#)(y) > 1. Put ¢ = lim(#)(y). Then n € N2 and
yr < im(%). Then for each o € Ny%, there exists A € % such that A < p. Thus
A < 71 and so z, < lim(&). Hence cl(lim(.#)) < lim(.%). Thus lim(%) is a closed
fuzzy set. Similarly, adh(.%) and Q-adh(.%) are closed fuzzy sets.

(ii) follows from Theorem 3.12 (iv) and Theorem 3.13.

(iii) follows from Theorem 3.12 (iv) and Theorem 3.14. O
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Theorem 3.19. If{.%;: j € J} is a family of fuzzy filterson X and % = (| %,
JjEJ
then:
(i) lim(&F) = A lm(%)).
JjeJ
(i) F — piff F; — p foreach j € J.

Proof. (i) Since & < % for all j € J, we have lim(.%) < lim(%;) forall j € J

and so lim(&#) < A lm(%;). Conversely, if o, < A lim(%;), then z, < lim(%;)
JjeJ JjEeJ
for all j € J, then (Vg € N2)(n € %) for all j € J. Son € % and hence

ZTo < lUm(F). Thus A lim(%;) < lim(.%).
JjeJ
(ii) Since .7 < .Z, for all j € J, then by Theorem 3.12 (ix), % — p implies %, — p
for all j € J. Conversely, if .#; — p for each j € J, then for each open Q,-cover %
of i there exist a finite subset % of % and a \; € % such that \; < \/{n: n€ %}

for each j € J. So A A < V{n: n € %}. Put A= A A;. Then A € % and
jed jeJ
A< V{n: n€%}. Hence F — p. O

Corollary 3.20. For a fuzzy filter % on X, we have F — x, (¥ — p) iff
P —xq (P — p) for each & € P(F).

It is well known that continuity can be completely characterized by means of the
convergence of filter bases. In the following, we characterize the fuzzy continuity
between fuzzy topological spaces by means of convergent fuzzy filter bases.

Definition 3.21 [14], [28]. A mapping f: (X,7) — (Y, A) is called F-continuous
if (V00 € FP(X))(¥n € N9, )(3pe NO)(f(u) <n).

Theorem 3.22. Let f: (X,7) — (Y,A) be a mapping. Then the following are
equivalent:
(i) f is F-continuous.
(i) For each z, € FP(X), f(NS) — f(za).
(iii) For each fuzzy filter base 8 on X, f — p implies f(8) — f(u).
(iv) For each fuzzy filter base  on X, 8 — x, implies f(3) — f(xo) for each
o € FP(X).
(v) For each prime fuzzy filter & on X, & — u implies f(P?) — f(u).
(vi) For each prime fuzzy filter & on X, & — x,, implies f(¥?) — f(xo) for each
2o € FP(X).
(vil) For each fuzzy filter base 3 on X, f(lim(3)) < lim(f(8)).
(viii) For each prime fuzzy filter & on X, f(lim(2?)) < lim(f(2)).
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Proof. (i) <= (ii): The statement that f is F-continuous is (Vz, €
FP(X))(Vn € N;’?(M))(Hu € NE)(f(n) < n) and this is exactly the statement
that the fuzzy filter base f(N&) — f(za).

(i) = (iii): Let u € I and let 8 be a fuzzy filter base on X such that 3 — p.
Let % = {nj: j € J} be an open Qq-cover of f(u). Then (Vo € X with u(z) >
a)(3j e J)n; € NfQ(%)). By F-continuity of f, (30; € N&)(f(c;) < n;). Then
the family {o;: j € J} is an open Q4-cover of . Since 3 — p, there exist a finite
subset Jy of J and a A € 3 such that A < \/{o;: j € Jo}. Then f(A) < f(\{o;: j €
Jo}) < VA{f(oy): j € Jo} < \VH{nj: j € Jo}. Thus f(B) — f(p).

(iii) <= (iv) and (v) <= (vi). Immediate from the fact that for each u € IX,
j= V{a: 70 <} and f(1) = Vf(2a): 7o <}

(iv) <= (vil) and (vi) <= (viii): Follow immediately from the definition.

(ili) = (vi): Obvious.

(vi) = (iii): Let § be a fuzzy filter base on X with § — pand let Z = {n;: j €
J} be an open Q,-cover of f(u). Put .# = (5). Then .# is a fuzzy filter on X with
Z — p. By Corollary 3.20, for each & € P (F) we have & — pu and so by (vi),
f(ZP) — f(u). Then there exist a finite subset Jy of J and a A € & such that
f) < V{n;: j € Jo}. Since A € & for each & € P(F), we have A € .Z and so
O € [(F). Thus f(F) — [(u).

(iv) = (i): Let 2o € FP(X) and 7 € Nﬁza). Since 3 = N¢ — z,, , we have
f(B) = f(za) by (iv) and so (Fo € B)(f(0) < 7). Hence f is F-continuous. O

If (X, 7) and (Y, A) are topological spaces and f: (X,7) — (Y, A), then f is con-

tinuous iff for any filter % on X, we have f(adh(#)) C adh(f(.%)). This property
is lost in the fuzzy case as the following theorem shows.

Theorem 3.23. If a mapping f: (X,7) — (Y,A) is F-continuous, then for
every 3 € FLB(IX) we have f(adh(3)) < adh(f(3)) (f(Q-adh(3)) < Q-adh(f(3))).

Proof. Let 3 be afuzzy filter base on X, z, < Q-adh(5), o € fandn € NJ?(%).
By hypothesis, there exists u € Na?a such that f(u) < 7. Since ugo, we have ngf (o).
So f(za) < Q-adh(f(8)). This shows that f(Q-adh(8)) < Q-adh(f(8)). The proof
for the part in front of the parentheses is similar. O

Definition 3.24 [19]. Let {(X,,7;): j € J} be a family of fuzzy topological

spaces, X = [] X, and let 7 be the fuzzy topology on X generated by the sub-
JjeJ

base {Pfl(nj): n; € 7;,j € J}, where P;: X — Xj is the projection mapping

for each j € J. The pair (X, 7) is called the fuzzy product space of the family

{(Xj,75): jeJ}.
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Theorem 3.25. Let (X, 7) be the fuzzy product space of a family {(X;,7;): j €
J} of fuzzy topological spaces, 3 a fuzzy filter base on X, u € I, z, € FP(X) and
let Pj: X — X, be the projection map. Then:

(i) B — x4 iff Pj(3) — Pj(xq) for each j € J.
(ii) 8 — p iff P;(B) — P;(p) for each j € J.
(iii) If B x xq, then Pj(5) x Pj(zq) for each j € J.
(iv) If 8 is upper and (3 & Zo, then P;(5) & Pj(xq) for each j € J.

Proof. (i) Since each P; is F-continuous, by Theorem 3.22 we have that
B — xz, implies that p;(#) — P;(zs) for each j € J. Conversely, suppose that
p;(8) — Pj(xq) for each j € J. Let p € N& in (X, 7') Then there exist j1, jo, ..., jn

in J and p, € N9

Jn

each p;(8) — Pj(xa), p € Pj, (8). Let g, € B be such that Pj, (0x) = pk. Then
01NQ2...Non <0< uand hence pu € 5. This proves that § — x,.

in (Xj,,7;,) such that o = /\ (Hk) p and z4qp. Since

(ii) Since each P; is F-continuous, by Theorem 3.22 we have that § — p implies
P;(B8) — P;(u). Conversely, suppose that P;(5) — Pj(u1) and let % = {n;: j € J}
be an open Q,-cover of p. Then (Va € X with u(x) > «)(3jo € J)(xaqnjo). Since

nj, € T, there exist ji,j2,...,Jn in J and o; € 7, such that o9 = /\ Py Yo) < mjo
iy

and ogqx,. For each ¢ we have P, (95(1)(]0Z and thus there exists A; € 8 with P}, (\;) <
o;. Let A € B with A < /\ Ai. Since \; ‘ 1(m) we have A < 0¢ < n;,. Thus

i=1
A< V{nj,: i=0,1,2,...,n} and this proves that 5 — pu.

(iii) follows from (i) and Theorem 3.13.
(iv) follows from (i) and Theorem 3.14. O

The concept of Q,-compactness (strong Q-compactness) due to Zhongfu [33] pro-
vides the theory of fuzzy compactness which is applicable to arbitrary fuzzy subsets.
So, Kerre, Nouh and Kandil in [16], [17] introduced and studied the concept of
©1,2-F-Q4-compactness to unify and generalize several characterizations and prop-
erties of Q,-compactness due to Zhonghu [33] and their weaker and stronger forms.
In this section we give new characterizations and properties of strong ()-compactness
in terms of convergence of the fuzzy filter base and the fuzzy filter.

Definition 3.26 [33]. Let (X,7) be a fts, o € (0,1] and p € IX. Then:
(i) The family % = {n;: j € J} C 7 is called an open Q,-cover of p iff (Vz €
X with ju(x) > a)(3] € J)(weany).
(ii) A subfamily %4 of a Qu-cover % of p, which is also a Q,-cover of pu, is called
a @Qq-subcover of pu.
(iii) A fuzzy set u is called Q,-compact if each open Q,-cover of p has a finite
Q-subcover of .
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(iii) A fuzzy set u € IX of a fts (X, 7) is said to be strong Q-compact if p is Qq-
compact for each « € (0,1].

(iv) A fts (X,7) is called Q,-compact (strong @Q-compact) iff X is Q,-compact
(strong Q-compact).

Theorem 3.27. Let (X,7) be a fts and u € IX. Then u is strong Q-compact

iff for each family {p;: j € J} C 7’ such that A p;(x) < a for each x € fiyq, there
jeJ
exists a finite subset Jy of J such that A p;(x) < « for each x € fiyq.
j€Jo
Proof. Let {u;: j € J} C 7’ be such that A p;(z) < a for each € pypa.
jeJ
Then (Vz € X, p(z) > ) (xaq V uj) and so the family {u$: j € J} is an open
jeJ

Qq-cover of pu. Since p is strong Q-compact, there exists a finite subset Jy of J
such that the family {u$: j € Jo} is a Qq-subcover of p. Then (Vz € X, u(z) >

@) (zag V u‘;) Thus A p;(x) < a for each « € pyq. Conversely, let {n;: j € J}

Jj€Jo j€Jo
be an open Qu-cover of p. Then (Vz € X, u(z) > «)(3j € J)(zagn;) and so

A nj(x) < a for each x € pya. Since 75 € 7', by hypothesis there exists a finite

JjeJ

subset Jo of J such that A\ 7$(r) < a for each x € fiyq- It follows that {n;: j € Jo}
j€Jo

is a Qq-subcover of u. Thus p is Qu-compact for each o € (0,1]. Thus p is strong

Q-compact. O

Corollary 3.28. A fts (X, 7) is strong Q-compact iff for each family {p;: j €

J} C 7’ such that A p;(x) < o for each x € X there exists a finite subset Jy of J
JjEJ
such that A p;j(z) < « for each z € X.
Jj€Jo

Theorem 3.29. Let (X, 7) be a fts and p € IX. If u is strong Q-compact, then
every upper fuzzy filter base (fuzzy filter base) 3 on u is Q-adherent (adherent) to
some X, In L.

Proof. The proofs for both parts are very similar; so, we only present the proof
for the part not in the parentheses. Let j € IX be strong Q-compact and suppose
that 8 = {n;: j € J} is an upper fuzzy filter base on g having no @Q-adherent
point in p. Let z, < p. Corresponding to each j € J there exists g, € Nga and
n;(zq) € B such that g, qnj(za). Thus, the family % = {g,,: z € X, p(x) > a} is
an open Q,-cover of . Since p is strong Q-compact, for each o € (0, 1] there exist
finitely many members 0,1, 0,2, ..., 0z from % for xl, 22, ... 2" < p such that

the family % = {gx;;: k=1,2,...,n} is a Qq-subcover of u. Since ( is a fuzzy
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n
filter base on yu, there exists n;, € 3 such that n;, < A n;(z%) and n;, A u # 0 and
k=1

so there exists y, < 7, A p. Since the family {o,x: k = 1,2,...,n} is a Qa-cover
of y, we have y,qo,» for some 1 < k < n and so 7;,q0,+ which implies o, gn; (zF),
a contradiction. O

Corollary 3.30. If a fts (X, 7) is strong Q-compact, then every upper fuzzy
filter base (fuzzy filter base) 8 on X is Q-adherent (adherent) to some z.

Theorem 3.31. Let (X, 7) be a fts and p € IX. If u is strong Q-compact, then
every maximal upper fuzzy filter base (maximal fuzzy filter base) 3 on u converges

to some x, In L.

Proof. The proofs for both parts are very similar; so, we only present the proof
for the part not in the parentheses. Let § be a maximal upper fuzzy filter base on p.
By Theorem 3.29, we have (§ é?( Zq in p and then by Theorem 3.18 (iii), we have
8 — xq in p. (]

Corollary 3.32. Ifafts (X, 7) is strong Q-compact, then every maximal upper
fuzzy filter base (maximal fuzzy filter base) 5 on X converges to some .

As an application of the above results we can give a proof of the fuzzy Tychonoff
Theorem (Theorem 3.16 in [17]) without use of the fuzzy Alexander’s subbase theo-
rem (Theorem 3.12 in [17]).

Theorem 3.33. Let {(X;,7;): j € J} be a family of fts’s, let (X,7) =
(H X, 11 Tj) be a fuzzy product space and p = [[ p; € IX. Then yu; is a
jeJ jeJ jeJ
strong @Q-compact fuzzy set in (X;,7;) for each j € J iff u is a strong Q-compact
fuzzy set in (X, 7).

Proof. Let P;: X — X, be the projection mapping and pu € I* a strong
Q-compact fuzzy set in (X, 7). Since P; is F-continuous, hence by Theorem 3.8
in [16], Pj(u) = pj € I is a strong Q-compact fuzzy set in (X, 7;) for each j € J.
Conversely, suppose that each u; € I Xi is strong Q-compact and let 3 be a fuzzy
filter base on . Then p;(8) = B, is a fuzzy filter base on u,; for each j € J. By
Theorem 3.27, 3; — xJ, and x4, < p; for each j € J. Then by Theorem 3.25 (i),
B — xq = <:1:{¥ Jje J> and z, < p. Hence p is strong QQ-compact. |
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4. NEW CONVERGENCE THEORY OF FUZZY NETS

In 1980, Pu and Liu introduced the notion of fuzzy nets and a new concept of the
so-called Q-neighborhood was given, which could reflect the features of the neigh-
borhood structure in fuzzy topological spaces. By this new neighborhood structure
the Moore-Smith convergence theory was established splendidly [28].

In this section we will give a new notion of convergence for fuzzy nets different from
the one given by Pu and Liu in [28]. For more details on the difference we refer to
the results in Section 5, which are valid only for our new notions. Our notion is such
that the relationship between fuzzy nets and fuzzy filters and their convergence is
the same as the relation between filters and nets and their convergence in topological
spaces.

Definition 4.1 [28]. A mapping .¥: D — FP(X) is called a fuzzy net in X and
is denoted by {S(n); n € D}, where D is a directed set. If S(n) = z, for each
n € D, where x € X, n € D and «,, € (0,1] then the fuzzy net . is denoted as
{z}, ; n € D} or simply {z7, }.

Definition 4.2 [28]. A fuzzy net 7 = {y' ; m € E} in X is called a fuzzy
subnet of a fuzzy net .7 = {x, ; n € D} iff there is a mapping f: E — D such that:
(i) 7 =S o f, that is, T; = ;) for each i € E.
(i) For each n € D there exists some m € E such that, if p € E with p > m, then
f(p) = n.

We shall denote a fuzzy subnet of a fuzzy net {z” ; n € D} by {zf(m) ;me EY,

Qnp? Qf(m)?

the justification for which is clear from the definition.

Definition 4.3. Let (X,7) be a fts and let .7/ = {2} ; n € D} be a fuzzy net
in X and p € IX. Then .7 is said to be :
(i) in piff (Yn € D)(z}, < p).
(ii) eventually with p iff (3m € D)(Vn € D, n = m)(z} < ).
(iii) frequently with yu iff (Vm € D)(3n € D, n = m)(x], < p).
(iv) universal iff Vn, o € IX, if . is eventually with 7 V g, then it is eventually
with 7 or o.

Lemma 4.4. Let (X,7) be a fts and a € [0,1), then the net {x™} is a universal
net in (X, 14(7)) iff the fuzzy net {z}__} is universal in (X, ).
Proof. It is similar to that of Lemma 1.1 in [8] and hence omitted.

Definition 4.5. Let (X,7) be a fts, ./ = {2}, ; n € D} a fuzzy net in X and
Zo € FP(X). Then . is said to be:
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(i) convergent to zo, denoted by . — x4, if (V9 € N&)(3m € D) (Vn €
D with n > m)(z}, <n).
(ii) Q-convergent to x, [28], denoted by . A To, if (V€ N&) (3m € D)(Vn €
D with n = m)(z7 qn).
The limit and @-limit of the fuzzy net . is defined by lim(S) = \/{z, € FP(X):

S — o} and Q-1im(S) = \/{zo € FP(X): ¥ A Zo ), Tespectively.

Lemma 4.6. Let (X,7) be afts and . = {x], ;n € D} a fuzzy net in X. Then
(i) 2o <Um(S) (0 < Q-lm(F)) iff & — 20 (L S 14).
(i) lim(.¥) and Q-lim(.) are closed fuzzy sets.

Proof. (i) follows immediately from Definition 4.5.

(ii) Since lim(.¥) < cl(lim(.¥”)) it suffices to show that cl(lim(”)) < lim(.#). Let
2o < c(lim(.#)) and n € N . Then nglim(.#) and so there exists y € X such
that n(y) + lim(.#)(y) > 1. Put ¢t = lim(-*)(y). Then y:qn and y; < lim(.) and
so (Vo € Nﬁ)(ﬂm € D)(¥Yn € D, n > m)(x}, < o), which implies j;, < 7. Thus
2o <lim(). Hence cl(lim()) < im(). Thus lim(.¥) is a closed fuzzy set. The
proof for @-lim(.¥) is similar. O

Theorem 4.7. Let (X, 7) be a fts, v, € FP(X) and p € IX. Then z, < cl(p)
iff there exists a fuzzy net .7 = {x}, ;n € D} convergent to x, such that x}, qu for
all n.

Proof. Let.” — x4 and xy, qu for all n. If n € Na?a’ then z7, < n for some n
and so ngu. Thus z, < cl(u). Conversely, let zo < cl(u). Then (Vn € N& )(nqpu).
That is, there exist y € supp(n) and a real number ¢, with 0 < ¢, < n(y) such
that yfﬁ < n and yfﬁqu. Let D = Ng?a . Then (D, <) is directed under the inclusion
relation. Then .7 = {y;/ < n: y{ qu, n € D} is a fuzzy net such that . — x,. O

Lemma 4.8. Let (X,7) be a fts, 2, € FP(X) and . = {2} ;n € D}. If
¥ — x,, then every fuzzy subnet of . is also convergent to x,.

Proof. Let.” = {2}, ;n € D} be a fuzzy net in X such that ¥ — z, and
let T = {yi"; m € E} be a fuzzy subnet of .. Let n € Nfa. Then there exists
m € D such that for every n € D, n > m, we have z7;, <. By definition of T', for
this m there exists [ € F such that for each p € E, p > [, we have f(p) > m, where
f: E— D. Now,y; = :v,é(f’zz)) Then y; <7 for all p >l and so T — z,. O
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Theorem 4.9. The fuzzy net . = {x, ;n € D} is convergent to x, iff every
universal fuzzy subnet of . is convergent to z.

Proof. If.¥ — x4, then by Lemma 4.8 every universal fuzzy subnet of .% is
convergent to x,. Conversely, assume that the condition is satisfied and (by way of
contradiction) that .# is not convergent to zo. Then (o € N2 )(Vm € D)(3n €
D,n = m)(o(z") < 7, (2")). So we may assume that o(z") < 7, (2") for all
n € D. But then, although there are universal subnets of %, no such subnet could

converge to x. O

Definition 4.10. Let (X,7) be a fts, 2, € FP(X) and let .7 = {2}, ;n € D}
be a fuzzy net in X. Then z,, is called:
(i) an adherent point of a fuzzy net ., denoted by & « x4, if (V7 € Ng?a)
(Vne D)3Fme D, m=n)(xy <n).
(ii) a @Q-adherent point of a fuzzy net .# [28], denoted by .7 & Ta, if (V€ NE)
(Yne D)3Fme D, m=n)(x] qn).
The adherence and @-adherence of the fuzzy net . is defined by adh() =
V{zo € FP(X): .%¥ x 24} and Q-adh(”) = \/{z, € FP(X): & & Zo}, TESPEC-

tively.

We now prove the expected relationship between adherent (Q-adherent) points
and fuzzy subnets.

Lemma 4.11. Let (X,7) be a fts and ¥ = {x}, ;n € D} a fuzzy net in X.
Then:

(i) zo < adh(¥) (24 < Q-adh(Y)) iff S x 24 (S & T ).
(i) lim(.¥) < adh() and Q-lim(’) < Q-adh(.¥).
(i) adh(.¥) and Q-adh(.”) are closed fuzzy sets.

Proof. It is similar to that of Lemma 4.6. O

Theorem 4.12. A fuzzy point x,, is an adherent (Q-adherent) point of a fuzzy
net . = {x}, ;n € D} iff there exists a fuzzy subnet .7 of . which converges
(Q-converges) to x,.

Proof. The proofs for both parts are very similar; so, we only present the proof
for the part not in the parentheses. Let z, < adh(.#). Then for any p € N& , there
exists an element z]; of the fuzzy net .7 such that 2}, < p. Let E = {(n,u): n €
D, p€ NZ and 2 < p}. Then (E,>>) is a directed set where (m, p) > (n, o) iff
m>mnin D and p < oin N?. Then J: E — FP(X) given by 7 (m,p) = 2
can be checked by a fuzzy subnet of* .. To show that .7 — x,, let n € Nga. Then
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there exists n € D such that (n,7) € E and then x}, < 7. Thus, for any (m,u) € E
such that (m,u) > (n,n), we have .7 (m, u) =z < p < 1. Hence J — x,. The

converse is clear. O

In the following, we characterize fuzzy continuity between fuzzy topological spaces
by means of convergent fuzzy nets.

Theorem 4.13. Let f: (X,7) — (Y, A) be a mapping. Then the following are
equivalent:
(i) f is F-continuous.
(ii) . — zo implies f(.¥) — f(zqy) for each x, € FP(X).
(iii) For each universal fuzzy net . in X, . — x, implies f(.) — f(z,) for each
24 € FP(X).
(iv) For each fuzzy net . = {z}, ;n € D} in X, f(lim()) < lim(f(*)).
(v) For each universal fuzzy net . in X, f(lim(.¥)) < lim(f(.¥)).
(vi) For each fuzzy net . in X, f(adh(”)) < adh(f()).

Proof. (i) = (ii). Let ¥ = {z, ; n € D} be a fuzzy net in X such that
S = xe. In e NfQ(xa), then by (i), f~1(n) € Ng?a. Since ¥ — =z, we have
(3m € D)(Yn € D, n = m)(z% < f~*(n)) which implies that f(z ) < 7. Thus

(ii) = (i). Let n € IV be open and z, € FP(X) be such that z,qf~!(n). Then
f(xza)gn and so n € NfQ(xa). Suppose that for each p € N, we have u £ f~1(n).
Then p(x*) > f~1(n)(z*) for some z* € X. Take xg(#) to be a fuzzy point with
by (@) = p(z*). Then o < pand a(u) > f~'(n)(=*) = n(f(z#)). Let
D= (N:EQQ, <). Then .¥ = {zg(u); uwe N:EQQ} is a fuzzy net in X. It is easy to verify
that . converges to z, but f(.) does not converge to f(z,), since n € N;’?(M)
and f (:I:g (u)) % 7. This contradiction shows that there exists some u € Ng} with
u < f~Y(n). Thus f~1(n) is an open Q-neighborhood of z,, and so f~1(n) is an open
fuzzy set. Thus f is F-continuous.

(ii) = (vi): Let 2o < adh(”). By Theorem 4.11, there exists a fuzzy subnet T
of S with T — x,. Then f(T) is a fuzzy subnet of f(S) and by (ii), f(T) —
f(zq) which by Theorem 4.12 implies that f(z,) < adh(f(S)). Thus f(adh(S)) <
adh(f(5)).

(vi) = (ii): Suppose that there exists a fuzzy net . = {2} ;n € D} with
¥ — x, while f(S) does not converge to f(zs). So (In € N;;?(za))(Vm e D)3n e
D,n = m)(f(z} ) £n). So we may assume that f(z}, ) & n for all n € D. Since
2o <1lim(S) < adh(S), we have f(z,) < adh(f(S)) by (vi). Thus by Theorem 4.12,
there exists a fuzzy subnet of f(S) which is convergent to f(z,), which is impossible
since f(z} ) £ nforalln € D. Thus f(.) must be convergent to f(za).
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(ili) = (iv). It is obvious.

(iv) = (iii). Let . = {23 ;n € D} be a fuzzy net in X and suppose that
. — x4 while f(S) does not converge to f(zo). Then (In € NfQ(%))(Vm €
D)(3n € D,n = m)(f(z ) £ n). So we may assume that f(z}, ) £ n for all
n € D. If T is a universal fuzzy subnet of ., then T — =z, but f(T) is not
convergent to f(z,), a contradiction with (iv). O

Theorem 4.14. Let f: (X,7) — (Y, A) be a mapping. Then the following are
equivalent:

(i) f is F-continuous.
(i) & £ 24 implies f(¥) A f(zq) for each z, € FP(X).
(iii) For each universal fuzzy net . in X, ./ A Zo implies () A f(xq) for each

2o € FP(X).

(iv) For each fuzzy net . = {x, ;n € D} in X, f(Q-lim(.¥)) < Q-lim(f(~)).
(v) For each universal fuzzy net . in X, f(Q-lim(.¥)) < Q-lim(f(.%)).
(vi) For each fuzzy net . in X, f(Q-adh(¥)) < Q-adh(f(.¥)).

Proof. We omit the proof which follows a line similar to that of Theorem 4.13
with certain straightforward modifications. 0

Theorem 4.15. Let . = {x}, ;n € D} be a fuzzy net in the fuzzy product
space (X, 7) = (H X;, 11 Tj>, 2o € FP(X) and let P;: X — X, be the projection
jes T jeJ
map for each j € J. Then:
(i) & — xq iff Pj() ={P;j(z} );n€ D} — Pj(zy) in X; for each j € J.

Qn

(ii) If & x xq, then P;() = {P;(22 ); n € D} «x Pj(x,) in X; for each j € J.

n

(iii) If & & 2o, then P;(#) = {P;(a" ); n € D} & Pj(xa) in X, for each j € J.

Proof. (i) Since P; is F-continuous for each j € J, then by Theorem 4.13,
& — 1z, implies P;j(¥) — Pj(x,) for each j € J. Conversely, suppose that
Pj(#) — Pj(zq) for each j € J. Let Jy be a finite subset of J and 39 =

A Pj_l(uj): zaq N Pj_l(ﬂj), Wi € Tj}. Then ¢ is a local base at z, [28].

Jj€Jo Jj€Jo
Let p = A P;'(u;) € f2. Then (Vj € J)(3n; € D,j € Jo)(¥n € D,n >
Jj€Jo
nj)(Pj(xy, ) < py). Let ng > nj for each j € Jo. Then, if n > ng, we have

Pj(xy, ) < pj for each j € J and so zj;, < A ijl(uj) = p. Thus, ¥ — z,.
Jj€Jo
(ii) and (iii) follow from (i) and Theorem 4.12. O

In the following results we give new characterizations and properties of strong
Q-compactness in terms of convergence of fuzzy nets.
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Theorem 4.16. Let (X, 7) be a fts, a € (0,1] and u € IX. Then p is strong
Q-compact iff each fuzzy net . in p has a QQ-adherent point in p.

Proof. Let (X,7) be a fts and let x4 € IXbe strong Q-compact and if possible,
let .7 = {7 ;n € D} be a fuzzy net in p without any @Q-adherent point in pu.
Then (Vzo < 1)(3ns, € N )(Ing, € D)(Ym € D, m > ng,)(z qns.). Then the
family % = {ng,: « € X, pu(x) > a} is an open Qq-cover of p. Since p is strong

Q-compact, for each a € (0,1] there exist finitely many members n,1,m,2, ..., nx
from % for zl,22,... 2% < u such that the family % = {Nei 2 1 = 1,2,...,k}
is a QQa-subcover of p. Let the corresponding elements in D be ng1,m,2,. .., 0k
Because D is a directed set, there exists m € D such that m > n,: fori=1,2,... k.

Then z7 qn,: for some 1 < ¢ < k, a contradiction. Thus . must have a Q-
adherent point z, (say) in p. Conversely, let & = {u;: j € J} C 7/ such that

for each finite subset Jy of J we have A pj(z) > « for some x € pyq. Let
j€Jo

D = { N wjcpy e, je J}. Then &/ C D. For each A\; € D, let us choose a
j€Jo
fuzzy point 2’ and consider the fuzzy net . = {xi‘/ : A;j € D} with the directed set
(D, >) where for A;, A2 € D, Ay > A2 iff Ay < Ay in X. By hypothesis, there exists
To < pAQ-adh(7). Let n € N9 and pj € /. Since pj € D, there is A € D with
A > p; (that is, A < p;) such that Agn and hence pjgn. Thus zo < cl(p;) = p; for
each j € Jand so A pj(z) > a for some & € fiyq, a contradiction. Consequently,
jed
by Theorem 3.27, we have that p is strong Q-compact. O

Corollary 4.17. A fts (X, 1) is strong Q-compact iff each fuzzy net in X has a
Q-adherent point.

Theorem 4.18. Let (X,7) be a fts and u € IX. Then p is strong Q-compact iff
each fuzzy net in p has a fuzzy subnet in p @QQ-convergent to some fuzzy point in p.

Proof. Immediate consequence of Theorems 4.12 and 4.16. (]

Corollary 4.19. A fts (X, 1) is strong Q-compact iff each fuzzy net has a fuzzy
subnet convergent to some fuzzy point.

Definition 4.20. Let (X,7) be a fts, (D, >) a directed set. A fuzzy point
is called an adherent point of the fuzzy net .7 = {\,; n € D} of fuzzy sets in X iff
(Vn e D)(Vne NEL)3me D, m > n)(nghn).
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Theorem 4.21. Let (X, 7) be a fts and u € IX. Then p is strong Q-compact
iff every fuzzy net of fuzzy sets in p has an adherent point with value « in p.

Proof. Let . = {u,; n € D} be a fuzzy net in u (that is, p, A p # 0 for
each n € D) of fuzzy sets in X and pu is strong @Q-compact. For each n € D, let
A= c(V{pm: m € D, m > n}). Then & = {\,: n € D} is a family of closed

fuzzy sets with A\ A, (z) > « for some & € piyo and every finite subset Dy of D. By
neDy

Theorem 3.27, we have A A,(z) > a for some & € pyo. Let n € D and n € NS
neD

Then nq( \ ,um>. Then (I3m € D, m = n)(nqim). Thus z, < adh(S). Conversely,
m2>=n
let o7 = {p;: j € J} be a family of closed fuzzy sets with A p;(z) > « for some
Jj€Jo

T € [y and for each finite subset Jy of J. Let D = { N wi: g€ Jo}. Then (D, K)
JjeJ
is a directed set, where < denotes the inclusion relation on D. For each A\ € D, we
have A(z) > o for some x € piyq. Then the fuzzy net .7 = {A: X € D} of fuzzy sets
in p has an adherent point z, (say) in u. Let u; € o7 and n € Nga. Since p; € D,
we have (3 € D)(A < p; and Agn). Then p;gn and so (Vj € J)(zq < cl(py) = pj).
Thus A p;(y) > o for some y € pyq. Consequently, by Theorem 3.27, we have that
JjeJ
1 is strong QQ-compact. (Il

Corollary 4.22. A fts (X, 1) is strong Q-compact iff every fuzzy net of fuzzy
sets in X has an adherent point.

5. THE RELATION BETWEEN FUZZY FILTER AND FUZZY NET CONVERGENCE

Like in convergence theory in general topology, we can associate with each fuzzy
net in X a fuzzy filter on X and conversely. In this section we define the concepts
of fuzzy filter base generated by a fuzzy net and fuzzy net based on a fuzzy filter.
Then we study the relation between their convergence.

Definition 5.1. Let . = {z], ; n € D} be a fuzzy net in X. For each n € D,

let pn, = \V{z : m € D, m > n}. Then the family 8 = {u,: n € D} forms a
fuzzy filter base on X, called the fuzzy filter base generated by the fuzzy net ..

Theorem 5.2. Let (X,7) be a fts, o, € FP(X) and let . be a fuzzy net in X.
Then

(i) S =y ff By — x4
(i) & x g iff Br X Tq.
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Proof. (i) Since By ={p € I*: (In € D)(u = \{zZ : m € D, m > n})},
we have By — x4 iff (V€ N&)3p € Bo)(n < n) iff (Yn € N&)(In € D)(u =
Voam < 77) iff (vn € NQ)(3n e D)(Ym e D, m>n)a™ <n)iff & — z,.

a «
m>n

(i) Since By o x4 iff (V7 € NE)Vu € Bo)(nAn #0)iff (Yn € N)(Vn €
D)( V oz An # (2)) iff (Yn € N2)(Vn € D)3m € D, m > n)(x™ < n) iff

am
m2>=n

S X Ty O

Definition 5.3. Let § be a fuzzy filter base on X, z, € FP(X) and let Dg =
{(\2a): 2o < X € B}. Let us define > in Dg by (z1, A1) > (22, \a) iff Ay < Xa.
Then (Dg, >) is a directed set. Define .#3: Dg — FP(X) by .3(za,A) = 2. Then
73 is a fuzzy net in X, called the fuzzy net based on the fuzzy filter base 3.

Theorem 5.4. Let (X,7) be a fts, v, € FP(X) and let 8 be a fuzzy filter base
on X. Then:

(1) B — zq iff S5 — 4.
(i) & x g iff Sp X 4.

Proof. (i) Let 8 — x4 and let .3: Dg — FP(X) be the fuzzy net based on £,
where Dg = {(za,)): 2o < A € 8} and Fp(xa,N) = 2. If p € NY, then there
exists A € (3 such that A < p. Choose y; < A such that (y;,A) € Dg. If (2, \1) € Dg
is such that (z,, A1) = (ys, A), then #3(zr, A1) = 2z < A1. Since A\ < A < p, we have
zr < p. Hence S5(zp, M) < pr. Thus 5 — x4.

Conversely, let .3 — z, and let p € NSQ. Then there is (z,, A1) € Dg such that
for each (y,A) € Dg with (y¢, \) > (2, \1) we have Z3(ys, \) = yr < p. For each
w, < A1 we have (w,, A1) = (2, A1) and hence .3(w,, A1) = w, < p. Hence A < p.
Thus § — z4.

(ii) Let 8 o x4 and let #3: Dg — FP(X) be the fuzzy net based on %, where
Dg = {(2a,;A): 2o < X € B} and F3(24,A) = 2. Let p € NZ and (y;,\) € Dg.
Then A A p #. If 2. < A Ay, then (2., \) € Dg is such that (z,,\) > (y¢, A). Hence
S3(2r,A) = 2z < p. Thus S x z,. Conversely, let 5 x x, and let u € Ng?a
and A € 8. If yx < A, then (y;, A) € Dg and hence there is (z,, A1) € Dg with
(zry A1) = (Y4, A), and we have .#3(z,, A1) = 2z < p. Since A\ < A and 2z, < A\ A g,
we have z, < AAp and so AA p # 0. Thus 8 x z4. O

In the above Theorems 5.2 and 5.4, the concepts of convergence and adherence of
a fuzzy net in our sense can not be replaced by Q-convergence and ()-adherence of
a fuzzy net due to Pu and Liu [28].
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