Article
Keywords:
noncoercive hemivariational inequality; critical point theory; nontrivial solution; locally Lipschitz functionals
Summary:
In this paper we consider Neumann noncoercive hemivariational inequalities, focusing on nontrivial solutions. We use the critical point theory for locally Lipschitz functionals.
References:
[4] D. G. De Figueiredo:
Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research, Springer, Bombay, 1989.
MR 1019559 |
Zbl 0688.49011
[6] D. Goeleven, D. Motreanu and P. D. Panagiotopoulos:
Multiple solutions for a class of eigenvalue problems in hemivariational inequalities. Nonlinear Anal. 29 (1997), 9–26.
DOI 10.1016/S0362-546X(96)00039-9 |
MR 1447566
[7] S. Hu and N. S. Papageorgiou:
Handbook of Multivalued Analysis. Volume I: Theory. Kluwer Academic Publishers, Dordrecht, 1997.
MR 1485775
[8] S. Hu and N. S. Papageorgiou:
Handbook of Multivalued Analysis. Volume II: Applications. Kluwer Academic Publishers, Dordrecht, 2000.
MR 1741926
[10] P. D. Panagiotopoulos:
Hemivariational Inequalities and Their Applications. Birkhäuser-Verlag, Boston, 1998.
MR 0957088
[11] P. D. Panagiotopoulos:
Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer-Verlag, Berlin, 1993.
MR 1385670 |
Zbl 0826.73002