Previous |  Up |  Next

Article

Keywords:
noncoercive hemivariational inequality; critical point theory; nontrivial solution; locally Lipschitz functionals
Summary:
In this paper we consider Neumann noncoercive hemivariational inequalities, focusing on nontrivial solutions. We use the critical point theory for locally Lipschitz functionals.
References:
[1] K. C.  Chang: Variational methods for non-differentiable functionals and their applications to partial differential equations. J.  Math. Anal. Appl. 80 (1981), 102–129. DOI 10.1016/0022-247X(81)90095-0 | MR 0614246 | Zbl 0487.49027
[2] F.  Clarke: Optimization and Nonsmooth Analysis. Wiley, New York, 1983. MR 0709590 | Zbl 0582.49001
[3] D. G. Costa and J. V.  Goncalves: Critical point theory for nondifferentiable functionals and applications. J. Math. Anal. Appl. 153 (1990), 470–485. DOI 10.1016/0022-247X(90)90226-6 | MR 1080660
[4] D. G.  De Figueiredo: Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research, Springer, Bombay, 1989. MR 1019559 | Zbl 0688.49011
[5] L.  Gasinski and N. S.  Papageorgiou: Nonlinear hemivariational inequalities at resonance. J.  Math. Anal. Appl. 244 (2000), 200–213. DOI 10.1006/jmaa.1999.6701 | MR 1746797
[6] D.  Goeleven, D.  Motreanu and P. D.  Panagiotopoulos: Multiple solutions for a class of eigenvalue problems in hemivariational inequalities. Nonlinear Anal. 29 (1997), 9–26. DOI 10.1016/S0362-546X(96)00039-9 | MR 1447566
[7] S.  Hu and N. S.  Papageorgiou: Handbook of Multivalued Analysis. Volume  I: Theory. Kluwer Academic Publishers, Dordrecht, 1997. MR 1485775
[8] S.  Hu and N. S.  Papageorgiou: Handbook of Multivalued Analysis. Volume II: Applications. Kluwer Academic Publishers, Dordrecht, 2000. MR 1741926
[9] N.  Kenmochi: Pseudomonotone operators and nonlinear elliptic boundary value problems. J.  Math. Soc. Japan 27 (1975), 121–149. DOI 10.2969/jmsj/02710121 | MR 0372419 | Zbl 0292.35034
[10] P. D.  Panagiotopoulos: Hemivariational Inequalities and Their Applications. Birkhäuser-Verlag, Boston, 1998. MR 0957088
[11] P. D.  Panagiotopoulos: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer-Verlag, Berlin, 1993. MR 1385670 | Zbl 0826.73002
Partner of
EuDML logo