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Abstract. In this paper we consider Neumann noncoercive hemivariational inequalities,
focusing on nontrivial solutions. We use the critical point theory for locally Lipschitz
functionals.
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1. Introduction

The problem under consideration is a hemivariational inequality of Neumann type.

Let Ω ⊆ � � be a bounded domain with a C1-boundary ∂Ω,

(1)





− div(‖Du(x)‖p−2Du(x)) ∈ ∂j(x, u(x)) a.e. on Ω,

− ∂u

∂np
= 0 a.e. on ∂Ω, 2 6 p <∞.

The study of hemivariational inequalities has been initiated and developed by

P.D. Panagiotopoulos [10]. Such inequalities arise in physics when we have noncon-
vex, nonsmooth energy functionals. For applications one can see [11].

Many authors studied Dirichlet hemivariational inequalities. See for exam-
ple [5], [6] and others. Here we are interested in finding nontrivial solutions for
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Neumann hemivariational inequalities. So our result seems to be the first in this

direction.

In the next section we recall some facts and definitions from the critical point
theory for locally Lipschitz functionals and the subdifferential of Clarke.

2. Preliminaries

Let X be a Banach space and let Y be a subset of X . A function f : Y → �
is said to satisfy a Lipschitz condition (on Y ) provided that, for some nonnegative

scalar K, one has

|f(y)− f(x)| 6 K‖y − x‖

for all points x, y ∈ Y . Let f be Lipschitz near a given point x, and let v be any
other vector in X . The generalized directional derivative of f at x in the direction v,

denoted by fo(x; v), is defined as follows:

fo(x; v) = lim sup
y→x
t↓0

f(y + tv)− f(y)
t

where y is a vector in X and t a positive scalar. If f is Lipschitz of rank K near x

then the function v → fo(x; v) is finite, positively homogeneous, subadditive and
satisfies |fo(x; v)| 6 K‖v‖. In addition, fo satisfies fo(x;−v) = (−f)o(x; v). Now
we are ready to introduce the generalized gradient which is denoted by ∂f(x) as
follows:

∂f(x) = {w ∈ X∗ : fo(x; v) > 〈w, v〉 for all v ∈ X}.

Some basic properties of the generalized gradient of locally Lipschitz functionals are

the following ones:

(a) ∂f(x) is a nonempty, convex, weakly compact subset of X∗ and ‖w‖∗ 6 K for
every w in ∂f(x).

(b) For every v in X one has

fo(x; v) = max{〈w, v〉 : w ∈ ∂f(x)}.

If f1, f2 are locally Lipschitz functions then

∂(f1 + f2) ⊆ ∂f1 + ∂f2.

Let us recall the (PS)-condition introduced by Chang.
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Definition. We say that a Lipschitz function f satisfies the Palais-Smale condi-
tion if any sequence {xn} along which |f(xn)| is bounded and

λ(xn) = min
w∈∂f(xn)

‖w‖X∗ → 0

possesses a convergent subsequence.

The (PS)-condition can also be formulated as follows (see [3]).

(PS)∗c,+: Whenever (xn) ⊆ X , (εn), (δn) ⊆ � + are sequences with εn → 0, δn → 0,
and such that

f(xn) → c,

f(xn) 6 f(x) + εn‖x− xn‖ if ‖x− xn‖ 6 δn,

then (xn) possesses a convergent subsequence: xn′ → x̂.

Similarly, we define the (PS)∗c condition from below, (PS)∗c,−, by interchanging x
and xn in the above inequality. And finally, we say that f satisfies (PS)∗c provided
it satisfies (PS)∗c,+ and (PS)∗c,−.

Note that these two definitions are equivalent when f is a locally Lipschitz func-

tional.

The next theorem is a Mountain-Pass theorem for locally Lipschitz functionals.

Theorem 1. If a locally Lipschitz functional f : X → � on the reflexive Banach
space X satisfies the (PS)-condition and the hypotheses

(i) there exist positive constants % and a such that

f(u) > a for all u ∈ X with ‖u‖ = %;

(ii) f(0) = 0 and there is a point e ∈ X such that

‖e‖ > % and f(e) 6 0,

then there exists a critical value c > a of f determined by

c = inf
g∈G

max
t∈[0,1]

f(g(t))

where

G = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = e}.
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In what follows we will use the well-known inequality

(2)
N∑

j=1

(aj(η)− aj(η′))(ηj − η′j) > C|η − η′|p

for η, η′ ∈ � N , with aj(η) = |η|p−2ηj .

3. Existence theorem

Let X = W 1,p(Ω). Our hypotheses on j are as follows:
H(j): j : Ω × � → � is such that x → j(x, u) is measurable and u → j(x, u) is

locally Lipschitz;
(i) for almost all x ∈ Ω, all u ∈ � and all v ∈ ∂j(x, u) we have |v(x)| 6 a(x) with

a ∈ L∞(Ω);
(ii) uniformly for almost all x ∈ Ω we have that for all v ∈ ∂j(x, u) we have

v(x)u/|u| → f+(x) as u→ ±∞ where f+ ∈ L1(Ω), f+ > 0 with strict inequality
on a set of positive Lebesgue measure;

(iii) uniformly for almost all x ∈ Ω we have that

lim sup
u→0

j(x, u)
|u|p 6 θ(x)

with θ(x) ∈ L∞(Ω) and θ(x) 6 0 with strict inequality in a set of positive
measure.

Remark 1. Note that hypothesis H(j) (iii) is crucial to use the mountain-pass
theorem and moreover, mountain-pass theorem is crucial to prove the existence of a
nontrivial solution.

Theorem 2. If hypotheses H(j) hold, then problem (1) has a nontrivial solution
u ∈W 1,p(Ω).
���������

. Let Φ: W 1,p(Ω) → � and ψ : W 1,p(Ω) → � + be defined by

Φ(u) = −
∫

Ω

j(x, u(x)) dx and ψ(u) =
1
p
‖Du‖p

p.

Clearly Φ is locally Lipschitz (see [1]), and we can check that ψ is locally Lipschitz,
too. Set R = Φ + ψ.

Claim 1. R(·) satisfies the (PS)-condition (in the sense of Costa and Goncalves).
We start with (PS)c,+ first.
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Let {un}n>1 ⊆W 1,p(Ω) be such that R(un) → c when n→∞ and

R(un) 6 R(u) + εn‖u− un‖ with ‖u− un‖ 6 δn.

The above inequality is equivalent to

R(u)− R(un) > −εn‖u− un‖ with ‖u− un‖ 6 δn

with εn, δn → 0. Choose u = un + δun with δ‖un‖ 6 δn. Divide by δ. So, if δ → 0
we have

lim
δ→0

R(un + δun)−R(un)
δ

6 Ro(un;un).

Then we obtain

(3) Ro(un;un) > −εn‖un‖.

For (PS)c,− we have the following assertion: Let {un}n>1 ⊆W 1,p(Ω) be such that
R(un) → c when n→∞ and

R(u) 6 R(un) + εn‖u− un‖ with ‖u− un‖ 6 δn.

The above inequality is equivalent to

0 6 (−R)(u)− (−R)(un) + εn‖u− un‖ with ‖u− un‖ 6 δn.

Choose here u = un − δun with δ‖un‖ 6 δn. We obtain

0 6 (−R)(un + δ(−un))− (−R)(un) + εnδ‖un‖.

Divide this by δ. In the limit we have

0 6 lim
δ→0

(−R)(un + δ(−un))− (−R)(un)
δ

+ εn‖un‖.

Note that lim
δ→0

δ−1((−R)(un+δ(−un))−(−R)(un)) 6 (−R)o(un;−un) = Ro(un;un).

So finally we obtain again (3).
Also, p−1‖D(un + δun)‖p

p − p−1‖Dun‖ = p−1‖Dun‖p
p(1 − (1 + δ)p). So if we

divide this by δ and let δ → 0 we obtain that the result is equal to ‖Dun‖p
p. Fi-

nally, there exists vn(x) ∈ ∂Φ(un) such that 〈vn, un〉 = Φo(un;un). Note that
vn ∈ ∂(−

∫
Ω j(x, un(x)) dx) = −∂

∫
Ω j(x, un(x))) dx. So, it follows from (3) that

∫

Ω

vnun(x) dx− ‖Dun‖p
p 6 εn‖un‖,

for some vn ∈ ∂(
∫
Ω
j(x, un(x)) dx).
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Suppose that {un} ⊆ W 1,p(Ω) is unbounded. Then (at least for a subsequence)
we may assume that ‖un‖ → ∞. Let yn = un/‖un‖, n > 1; it is easy to see that
‖yn‖ = 1. By passing to a subsequence if necessary, we may assume that

yn
w→ y in W 1,p(Ω), yn → y in Lp(Ω), yn(x) → y(x) a.e. on Ω as n→∞

and |yn(x)| 6 k(x) a.e. on Ω with k ∈ Lp(Ω).
Recall that from the choice of the sequence {un} we have |R(un)| 6 M1 for some

M1 > 0 and all n > 1,

1
p
‖Dun‖p

p −
∫

Ω

j(x, un(x)) dx 6 M1.

Divide by ‖un‖p. We obtain

(4)
1
p
‖Dyn‖np

p −
∫

Ω

j(x, un(x))
‖un‖p

dx 6 M1

‖un‖p
.

We must show now that
∫
Ω
j(x, un(x))/‖un‖p dx→ 0 as n→∞.

Using the Lebourg mean value theorem (see [2, p. 41, Theorem 2.3.7]) we obtain

that for almost all x ∈ Ω, all u ∈ � and for some v ∈ ∂j(x, s) with s ∈ (0, u) we have

|j(x, u)− j(x, 0)| 6 | 〈v, u〉 | 6 a(x)|u|;

here we have used hypothesis H(j) (i).

So we obtain

|j(x, u)| 6 c1 + c2|u|

for some c1, c2 > 0. Note that j(x, 0) ∈ L∞.
So we can establish the estimate,

∣∣∣∣
∫

Ω

j(x, un(x))
‖un‖p

dx
∣∣∣∣ 6

∫

Ω

|j(x, un(x))|
‖un‖p

dx 6
∫

Ω

c1 + c2|un(x)|
‖un‖np

dx

6 c3
‖un‖p

+
c4

‖un‖p−1
,

where we have used the fact that W 1,p(Ω) embeds continuously in L1(Ω).
Thus, we have ∣∣∣∣

∫

Ω

j(x, un(x))
‖un‖p

dx
∣∣∣∣ → 0.

1070



So by passing to the limit as n→∞ in (4), we obtain

lim
1
p
‖Dyn‖p

p = 0

⇒ ‖Dy‖p = 0 (recall that Dyn
w→ Dy in Lp(Ω, � � ) as n→∞)

⇒ y = ξ ∈ � .

Note that yn → ξ in W 1,p(Ω) and since ‖yn‖ = 1, n > 1 we infer that ξ 6= 0. We
deduce that |un(x)| → +∞ a.e. on Ω as n→∞.
From the choice of the sequence {un} ⊆W 1,p(Ω) we have

∫

Z

vn(x)un(x) dx− ‖Dun‖p
p 6 εn‖un‖(5)

and

‖Dun‖p
p − p

∫

Ω

j(x, un(x)) dx 6 pM1.(6)

Adding (5) and (6), we obtain

∫

Ω

(vn(x)un(x) − pj(x, un(x))) dx 6 pM1 + εn‖un‖.

Divide this inequality by ‖un‖. We have

(7)
∫

Ω

vn(x)
‖un‖

un(x) dx−
∫

Ω

pj1(x, un(x))
‖un‖

dx 6 1
‖un‖

pM1 − εn.

From the Lebourg mean value theorem, for any 0 < ε < 1 we have

j(x, un(x)) = j(x, εun(x)) + sn(x)(1− ε)un(x)

with sn(x) ∈ ∂j(x, ϕn(x)) where ϕn(x) = (1− cn)un(x) + cnεun(x) with 0 < cn < 1.
Note that

|ϕn(x)| = |un(x)|(1− cn(1− ε)).

Since |un(x)| → ∞ we have that |ϕn(x)| → ∞. Suppose now that ξ > 0. Then
un(x) →∞ and ϕn(x) →∞.
From H(j) (ii) we can say that there exists some M > 0 such that for u > M and

for all v ∈ ∂j(x, u) we have

(f+(x)− ε) 6 v(x) 6 (f+(x) + ε).
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So for almost every x ∈ Ω we can find n0 = n0(x) such that for n > n0 we have

p(1− ε)un(x)(f+(x)− ε) 6 psn(x)(1− ε)un(x)

6 p(1− ε)un(x)(f+(x) + ε).

Dividing this by ‖un‖ we arrive at

p(1− ε)yn(x)(f+(x) − ε) 6 psn(x)(1 − ε)yn(x) 6 p(1− ε)yn(x)(f+(x) + ε).

Thus, for any x ∈ Ω we have

psn(x)(1 − ε)yn(x) → pξf+(x)

as n→∞ and ε→ 0.
Recall that |j(x, εun(x))| 6 c1 + c2ε|un(x)|. So |j(x, εun(x))|/‖un‖ 6 c1/‖un‖ +

c2ε|yn(x)|. Therefore, we obtain that lim |j(x, εun(x))|/‖un‖ → 0 as n → ∞ and
ε→ 0.
So, from the above we can say that

∫

Ω

pj(x, un(x))
‖un‖

dx→ pξ

∫

Ω

f+(x) dx.

But we already know that

(f+(x) − ε)yn(x) 6 v(x)
un(x)
‖un‖

6 (f+(x) + ε)yn(x).

So,
∫
Ω
v(x)un(x)/‖un‖dx→ ξ

∫
Ω
f+(x) dx.

Thus by passing to the limit in (7) we obtain

(1− p)ξ
∫

Ω

f+(x) > 0,

a contradiction to hypothesis H(j) (ii). The same argument holds when ξ < 0.
Therefore it follows that {un} ⊆W 1,p(Ω) is bounded. Hence we may assume that

un
w→ u in W 1,p(Ω), un → u in Lp(Ω), un(x) → u(x) a.e. on Ω as n → ∞ and

|un(x)| 6 k(x) a.e. on Ω with k ∈ Lp(Ω).
From the properties of the subdifferential of Clarke we have

∂R(un) ⊆ ∂Φ(un) + ∂ψ(un) ⊆ ∂Φ(un) + ∂
(1
p
‖Dun‖p

p

)
(see [2, p. 83]).
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So we have

〈wn, y〉 = 〈Aun, y〉 −
∫

Ω

vn(x)y(x) dx

with vn(x) ∈ ∂j(x, un(x)), wn the element with the minimal norm of the subdiffer-

ential of R and A : W 1,p(Ω) → W 1,p(Ω)∗ such that

〈Au, y〉 =
∫

Ω

(‖Du(x)‖p−2(Du(x), Dy(x)) dx.

But un
w→ u in W 1,p(Ω), so un → u in Lp(Ω) and un(x) → u(x) a.e. on Ω by virtue

of the compact embedding W 1,p(Ω) ⊆ Lp(Ω). Thus, vn is bounded in Lq(Ω) (see [1,
p. 104, Proposition 2]), i.e. vn

w→ v in Lq(Ω). Choose y = un − u. Then in the limit

we have that lim sup 〈Aun, un − u〉 = 0. By virtue of the inequality (2) we have that
Dun → Du in Lp(Ω). So we have un → u in W 1,p(Ω). The claim is proved.
For every ξ ∈ � , ξ 6= 0 we have

R(ξ) = −
∫

Ω

j(x, ξ) dx⇒ 1
|ξ|R(ξ) 6 − 1

|ξ|

∫

Ω

j(x, ξ) dx.

As before we can show that −|ξ|−1 ∫
Ω j(x, ξ) dx→ −

∫
Ω f+(x) dx < 0.

Thus we obtain that R(ξ) → −∞ as |ξ| → ∞.
In order to be able to use the mountain-pass theorem it remains to show that

there exists % > 0 such that for ‖u‖ = % we have R(u) > a > 0. In fact, we will show
that for every sequence {un} ⊆ W 1,p(Ω) with ‖un‖ = %n ↓ 0 we have R(un) > 0.
Indeed, suppose that this is not the case. Then there exists a sequence {un} such
that R(un) 6 0. Thus, we have

1
p
‖Dun‖p

p 6
∫

Ω

j(x, un(x)) dx.

Divide this inequality by ‖un‖p. Let yn(z) = un(x))/‖un‖. Then we have

‖Dyn‖p
p 6

∫

Ω

p
j(x, un(x))
‖un‖p

dx.

From H(j) (iii) we have that for almost all x ∈ Ω and any ε > 0 we can find δ > 0
such that for |u| 6 δ we have

pj(x, u) 6 (θ(x) + ε)|u|p.

On the other hand, as before we have that for almost all x ∈ Ω and all |u| > δ we

have
p|j(z, u)| 6 c1 + c2|u|.
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Thus we can always find γ > 0 such that p|j(x, u)| 6 (θ(x) + ε)|u|p + γ|u|p∗ for all
u ∈ � . Indeed, choose γ > (c1 + c2δ)δ−p∗ − (θ(x) + ε)δp−p∗ .

Therefore, we obtain

‖Dyn‖p
p 6

∫

Ω

(θ(x) + ε)|yn(x)|p dx+ γ

∫

Ω

|un(x)|p∗

‖un‖p
dx(8)

6
∫

Ω

(θ(x) + ε)|yn(x)|p dx+ γ1‖un‖p∗−p.

Here we have used the fact that W 1,p(Ω) embeds continuously in Lp∗(Ω).
So we obtain

0 6 ‖Dyn‖p
p 6 ε‖yn‖p

p + γ1‖un‖p∗−p.

Therefore in the limit we have that ‖Dyn‖p → 0. Recall that yn → y weakly in

W 1,p(Ω). So ‖Dy‖p 6 lim inf ‖Dyn‖p 6 lim sup ‖Dyn‖p → 0. So ‖Dy‖p = 0, thus
y = ξ ∈ � . Note that Dyn → Dy weakly in Lp(Ω) and ‖Dyn‖p → ‖Dy‖p, so yn → y

in W 1,p(Ω). Since ‖yn‖ = 1 we have that ‖y‖ = 1, so ξ 6= 0. Suppose that ξ > 0.
Going back to (8) we obtain

0 6
∫

Ω

(θ(x) + ε)yp
n(x) dx+ γ1‖un‖p∗−p.

In the limit we have

0 6
∫

Ω

(θ(x) + ε)ξp dx 6 εξp|Ω| (recall that θ(x) 6 0).

Thus we obtain that
∫
Ω θ(x)ξ

p dx = 0. But this is a contradiction. So there exists
% > 0 such that for ‖u‖ = % we have R(u) > a > 0.
So by Theorem 1 we have that there exists x ∈ W 1,p(Ω) such that 0 ∈ ∂R(u).

That is, 0 ∈ ∂Φ(u) + ∂ψ(u).
So, we can say that

(9)
∫

Ω

w(x)y(x) dx =
∫

Ω

‖Du(x)‖p−2(Du(x), Dy(x)) dx

for some w ∈ Lq(Ω) such that w(x) ∈ ∂j(x, u(x)) for every y ∈W 1,p(Ω). �
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