Previous |  Up |  Next

Article

Keywords:
Cauchy problem; parabolic equation; global existence; asymptotic behavior of solutions
Summary:
Global solvability and asymptotics of semilinear parabolic Cauchy problems in $\mathbb R^n$ are considered. Following the approach of A. Mielke [15] these problems are investigated in weighted Sobolev spaces. The paper provides also a theory of second order elliptic operators in such spaces considered over $\mathbb R^n$, $n\in \mathbb N$. In particular, the generation of analytic semigroups and the embeddings for the domains of fractional powers of elliptic operators are discussed.
References:
[1] R. A. Adams: Sobolev Spaces. Academic Press, New York, 1975. MR 0450957 | Zbl 0314.46030
[2] H. Amann: Linear and Quasilinear Parabolic Problems. Birkhäuser, Basel, 1995. MR 1345385 | Zbl 0819.35001
[3] H. Amann, M. Hieber and G. Simonett: Bounded $H_\infty $-calculus for elliptic operators. Diff. Int. Equations 3 (1994), 613–653. MR 1270095
[4] J. M. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodriguez-Bernal: Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains. Nonlinear Anal. TMA56 (2004), 515–554. MR 2035325
[5] A. V. Babin and M. I. Vishik: Attractors of partial differential evolution equations in unbounded domain. Proc. Roy. Soc. Edinburgh 116 (1990), 221–243. MR 1084733
[6] A. V. Babin and M. I. Vishik: Attractors of Evolution Equations. North-Holland, Amsterdam, 1992. MR 1156492
[7] J. W. Cholewa and T. Dlotko: Cauchy problem with subcritical nonlinearity. J. Math. Anal. Appl. 210 (1997), 531–548. DOI 10.1006/jmaa.1997.5409 | MR 1453190
[8] J. W. Cholewa and T. Dlotko: Global Attractors in Abstract Parabolic Problems. Cambridge University Press, Cambridge, 2000. MR 1778284
[9] M. A. Efendiev and S. V. Zelik: The attractor for a nonlinear reaction-diffusion system in an unbounded domain. Comm. Pure Appl. Math. 54 (2001), 625–688. DOI 10.1002/cpa.1011 | MR 1815444
[10] E. Feireisl: Bounded, locally compact global attractors for semilinear damped wave equations on $R^N$. Differential Integral Equations 9 (1996), 1147–1156. MR 1392099
[11] J. K. Hale: Asymptotic Behavior of Dissipative Systems. AMS, Providence, RI, 1988. MR 0941371 | Zbl 0642.58013
[12] D. Henry: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840. Springer, Berlin, 1981. MR 0610244
[13] A. Lunardi: Analytic Semigroup and Optimal Regularity in Parabolic Problems. Birkhäuser, Berlin, 1995. MR 1329547
[14] S. Merino: On the existence of the compact global attractor for semilinear reaction diffusion systems on $R^N$. J. Differential Equations 132 (1996), 87–106. DOI 10.1006/jdeq.1996.0172 | MR 1418501
[15] A. Mielke: The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors. Nonlinearity 10 (1997), 199–222. MR 1430749 | Zbl 0905.35043
[16] A. Mielke and G. Schneider: Attractors for modulation equations on unbounded domains–existence and comparison. Nonlinearity 8 (1995), 743–768. DOI 10.1088/0951-7715/8/5/006 | MR 1355041
[17] S. M. Nikolsky: A Course of Mathematical Analysis. Mir Publishers, Moscow, 1987.
[18] R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York, 1988. MR 0953967 | Zbl 0662.35001
[19] H. Triebel: Interpolation Theory, Function Spaces, Differential Operators. VEB Deutscher, Berlin, 1978. MR 0503903 | Zbl 0387.46033
Partner of
EuDML logo