[3] H. Amann, M. Hieber and G. Simonett:
Bounded $H_\infty $-calculus for elliptic operators. Diff. Int. Equations 3 (1994), 613–653.
MR 1270095
[4] J. M. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodriguez-Bernal:
Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains. Nonlinear Anal. TMA56 (2004), 515–554.
MR 2035325
[5] A. V. Babin and M. I. Vishik:
Attractors of partial differential evolution equations in unbounded domain. Proc. Roy. Soc. Edinburgh 116 (1990), 221–243.
MR 1084733
[6] A. V. Babin and M. I. Vishik:
Attractors of Evolution Equations. North-Holland, Amsterdam, 1992.
MR 1156492
[8] J. W. Cholewa and T. Dlotko:
Global Attractors in Abstract Parabolic Problems. Cambridge University Press, Cambridge, 2000.
MR 1778284
[9] M. A. Efendiev and S. V. Zelik:
The attractor for a nonlinear reaction-diffusion system in an unbounded domain. Comm. Pure Appl. Math. 54 (2001), 625–688.
DOI 10.1002/cpa.1011 |
MR 1815444
[10] E. Feireisl:
Bounded, locally compact global attractors for semilinear damped wave equations on $R^N$. Differential Integral Equations 9 (1996), 1147–1156.
MR 1392099
[12] D. Henry:
Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840. Springer, Berlin, 1981.
MR 0610244
[13] A. Lunardi:
Analytic Semigroup and Optimal Regularity in Parabolic Problems. Birkhäuser, Berlin, 1995.
MR 1329547
[14] S. Merino:
On the existence of the compact global attractor for semilinear reaction diffusion systems on $R^N$. J. Differential Equations 132 (1996), 87–106.
DOI 10.1006/jdeq.1996.0172 |
MR 1418501
[15] A. Mielke:
The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors. Nonlinearity 10 (1997), 199–222.
MR 1430749 |
Zbl 0905.35043
[17] S. M. Nikolsky: A Course of Mathematical Analysis. Mir Publishers, Moscow, 1987.
[18] R. Temam:
Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York, 1988.
MR 0953967 |
Zbl 0662.35001
[19] H. Triebel:
Interpolation Theory, Function Spaces, Differential Operators. VEB Deutscher, Berlin, 1978.
MR 0503903 |
Zbl 0387.46033