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CAUCHY PROBLEMS IN WEIGHTED LEBESGUE SPACES
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Abstract. Global solvability and asymptotics of semilinear parabolic Cauchy problems
in � n are considered. Following the approach of A. Mielke [15] these problems are investi-
gated in weighted Sobolev spaces. The paper provides also a theory of second order elliptic
operators in such spaces considered over � n , n ∈ � . In particular, the generation of analytic
semigroups and the embeddings for the domains of fractional powers of elliptic operators
are discussed.

Keywords: Cauchy problem, parabolic equation, global existence, asymptotic behavior
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Motivation and introductory notes

It is well known that the studies of compactness of trajectories and asymptotic
behavior of solutions to semilinear parabolic equations are more difficult when the

space variable x belongs to the whole � n or, at least, to an unbounded domain
Ω ⊂ � n . When dealing with the typical Cauchy problem of that form,

(1)

{
ut = ∆u + u− u3, t > 0, x ∈ � n ,

u(0, x) = u0(x), x ∈ � n ,

known as the bi-stable reaction diffusion equation, we are facing simultaneously
the incorrectness of the Poincaré inequality and the incomparability of the L2( � n )
and L4( � n ) norms of the solution. There is thus no term in (1) allowing to
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bound the solutions uniformly on the time interval [0, +∞) in the usual Sobolev
spaces [14]. Hence, studying such problems we are forced to work in weighted spaces
that are not, at a first view, so common and natural as the usual Sobolev spaces
(see [5], [7], [10], [16], [15]; also [9] for the most recent result on this subject).

In this paper we want to extend our result [7] using some ideas of analytic semi-
groups introduced in [3], [16] and [15]. Considering weight functions % : � n →
(0, +∞) we denote by Lp

%( � n ), p > 1, the Banach weighted space consisting of
all ϕ ∈ Lp

loc( � n ) having a finite norm

‖ϕ‖Lp
%( � n) =

(∫

� n

|ϕ(x)|p%(x) dx

)1/p

.

Throughout the paper we require of the weight function % that

(2)





% : � n → (0, +∞) is integrable on � n , belongs to C2( � n ), and satisfies∣∣∣∣
∂%

∂xj

∣∣∣∣ 6 %0% and

∣∣∣∣
∂2%

∂xj∂xk

∣∣∣∣ 6 C%, j, k = 1, . . . , n,

where %0, C are positive constants.

Remark 1. Thanks to the first condition in (2) the following property of % holds:

(3) ∀y ∈ � n sup
x∈ � n

%(x)
%(x− y)

< ∞.

Particular examples of weight functions are

(4) %(x) = (1 + |εx|2)−n or, for n = 1, also %1(x) = (cosh εx)−1, ε > 0.

Unfortunately, the spaces Lp
%( � n ) are not yet fully satisfactory from the point of

view of the local solvability and the asymptotics of problems like (1). For exam-
ple, although the Laplacian generates a strongly continuous analytic semigroup on

Lp
%( � n ) the smoothing action in this space is not as good as in the usual Sobolev
spaces. Simple examples show that W 1,2

% ( � n ) is not included in L6
%( � n ).1 Therefore,

nonlinearity in (1) does not takeW 1,2
% ( � n ) into L2

%( � n ), although it is Lipschitz con-
tinuous from W 1,2( � n ) into L2( � n ). What was said above makes it clear that one
can hardly build the semigroup on weighted spaces Lp

%( � n ) using the standard ap-
proach of [12], that is, checking the Lipschitz condition between a certain fractional

power space and a base space Lp
%( � n ). Thus, our main concern is to find a suitable

1 Indeed, specifying n = 3, %(x) = (1 + |x|2)−5 and f(x) = 1 + |x|2 one have a
counterexample.
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base space where Henry’s technique [12] would work. Our choice will be a Banach

space borrowed from [15] (see also [10])

(5) Lp
%,∞( � n ) =

{
ϕ ∈

⋂

y∈ � n

Lp
τy%( � n ) : ‖ϕ‖Lp

%,∞( � n) = sup
y∈ � n

‖ϕ‖Lp
τy%( � n) < ∞

}
,

p ∈ [1,∞), where {τy : y ∈ � n} is the group of translations

(6) τy%(x) = %(x − y), x ∈ � n .

Also more specific spaces L̇p
%,∞( � n ) are necessary in our studies. These are subspaces

of Lp
%,∞( � n ), where our elliptic operator will enjoy a dense domain, that is it will

generate a strongly continuous analytic semigroup. Since these are rather nonstan-
dard spaces, their definitions and properties as well as a description of second order

elliptic operators in these spaces will be discussed in detail in Part 2. In this way we
fill up a gap that can be observed in the literature connected with such spaces.

There are thus two main achievements of this paper. First, we prove that second
order elliptic operators (27) are negative generators of strongly continuous analytic

semigroups on both weighted and locally uniform spaces (Theorems 5 and 6) under
rather general assumptions on the coefficients. Our second task is to describe the

asymptotic behavior of solutions to the Cauchy problem (8) in terms of globally
attracting sets (Theorems 1 and 4). We show in particular that the convergence to

the attractor may be viewed, besides Lp
τy%( � n ) (as in [16]), also in the topology of

almost uniform convergence in � n .

In Part I the Cauchy problem in � n , generalizing (1), is considered. We study its
global solvability and describe the asymptotics. We remark that our assumptions,
made precise at the beginning of Part 1, are similar as in bounded domains and

weaker than in [5], [8]. Although we start with the global smooth solutions (in
the sense of [12]) we next extend them, constructing the semigroup in the whole of

Lp
%( � n ). Our main result of Part I will be the following.

Theorem 1. Suppose that f : � → � is a locally Lipschitz continuous function
with growth restricted in (10), (20) and satisfying the dissipativeness assumption (9).
Also, let % fulfil (2). Then the problem (8) defines on Lp

τy%( � n ), y ∈ � n , a C0

semigroup of weak global solutions such that

• orbits of bounded sets are bounded, and
• there exists an absorbing set.
Furthermore, this semigroup possesses an invariant set M which is bounded and

closed in Lp
%,∞( � n ) and has the following properties:

• M attracts bounded subsets of Ẇ 2,p
%,∞( � n ),
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• M is compact in Lp
τy%( � n ), y ∈ � n ,

• M is invariant with respect to the group of translations in � n .

Theorem 1 follows directly from the technical Theorem 4 and Proposition 1. The

reader may notice that M is an (Lp
%,∞( � n ), Lp

τy%( � n ))-attractor for the mentioned
semigroup in C̃ ⊂ Lp

%,∞( � n ) in the sense of [16, Definition 2.1], which is a special case
of the notion of an attractor appearing in [6]. Both (8) and the Complex Ginzburg-
Landau equation may be treated within a technique similar to that shown in [15].

Our considerations below, although inspired by a nice series of articles [16, 15], give
however independent and precise results concerning second order problems in � n for

arbitrary n ∈ � .

Part I

In this part we will study the Cauchy problem in � n , extending (1). Of course we

may work in the usual Sobolev spaces studying some particular Cauchy problems for
which the dissipation mechanism is strong (see [5]). However, dealing with problems

like (1), we would not be able to obtain satisfactory global in time estimates of
the solutions in these spaces. In particular, we would be unable to investigate the

asymptotics of such solutions. This is why we need and will work in weighted spaces.
To preserve the specific properties of the problem like (1) these weighted spaces

should include constant stationary solutions (e.g. u ≡ ±1 for the problem (1)) as
well as possible travelling wave solutions. In connection with the last remark recall

the nice example of [12, p. 136].

Example 1. A onedimensional problem

(7)

{
ut = uxx + u− bu3, t > 0, x ∈ � , b > 0,

u(0, x) = u0(x), x ∈ � n ,

has been reported in [12, §5.4, Exercise 6]. For any velocity v 6= 0 the problem (7)
has exactly two nontrivial bounded solutions (one being the negative of the other),
having the form of a travelling wave; u(t, x) = ϕ(x + vt). They start from the
unstable solution 0 at x → −∞ and go to ±

√
b when x → +∞ (when v > 0).

Since we would also like to use the semigroup approach to parabolic problems
originated by [12], the topology of weighted space should be simultaneously strong

enough to allow sufficiently nice Sobolev embeddings for the fractional power spaces
(i.e. domains of the fractional powers of elliptic operators). Such spaces and their

properties are described in detail in Part II of the paper. In the present part, without
special explanation, we just borrow information from Part II.
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1. Cauchy problem for a dissipative second order equation

We shall consider the Cauchy problem in � n , including (1):

(8)

{
ut = ∆u + f(u), t > 0, x ∈ � n ,

u(0, x) = u0(x), x ∈ � n ,

assuming that f : � → � is a locally Lipschitz continuous function satisfying the
dissipativeness condition

(9) ∃C1, C2 > 0: f(s)s 6 −C1s
2 + C2,

or equivalently,

lim sup
|s|→∞

f(s)
s

< 0.

For the global solvability of (8) in the space2 Xα
p,%,∞ we shall also assume the poly-

nomial growth condition

(10) |f(s)| 6 c(1 + |s|r), s ∈ � ,

with a certain (arbitrary, but finite) r ∈ (1,∞).
In this part of the paper we will consider real solutions to (8), also all function

spaces considered in this part are real.

1.1. Smooth solutions to (8).
Problem (8) will be studied as an abstract parabolic equation in the Banach space

X = L̇p
%,∞( � n ), where % satisfies (2), with a sectorial and densely defined operator

A = −∆: D(−∆) ⊂ L̇p
%,∞( � n ) → Lp

%,∞( � n ), D(−∆) = Ẇ 2,p
%,∞( � n ).

The existence of smooth solutions that belong to a class made precise in (19) will

not be proved here in detail. This is because such results are simple and follow the
standard scheme [8]. To be more specific:

• the existence of local Xα
p,%,∞-solutions (2α−n/p > 0, α ∈ [0, 1), p ∈ (1,∞)) is a

consequence of the embedding Xα
p,%,∞ ⊂ L∞( � n ) in Lemma 6 and the local Lipschitz

continuity of f ,

• the proof that the problem (8) with u0 ∈ Xα
p,%,∞ has a unique global solution

is based on the continuation method and uses (10) together with the “introductory”

estimate below.

2 For the definition of this and other function spaces see Part II.
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Lq
τy%( � n ) estimate. Here we assume that % satisfies the condition (2). Multiplying

(8) by u|u|q−2τy% (q > 2, τy%(x) = %(x− y)) we find

(11)
1
q

d
dt

∫

� n

|u|qτy% dx =
∫

� n

∆uu|u|q−2τy% dx +
∫

� n

f(u)u|u|q−2τy% dx.

Next we estimate the above terms as follows. For the first right hand side term we
have
∫

� n

∆uu|u|q−2τy% dx = −(q − 1)
∫

� n

|∇u|2|u|q−2τy% dx−
∫

� n

|u|q−2u∇u · ∇τy% dx

6
∫

� n

|u|q−2
(
−(q − 1)|∇u|2 + %0|∇u||u|

)
τy% dx =: H.

Maximizing the integrand with respect to |∇u| (see [15]) we next find that

(12) H 6 1
4(q − 1)

%2
0

∫

� n

|u|qτy% dx.

Transforming the term involving nonlinearity we get

∫

� n

f(u)u|u|q−2τy% dx 6 −C1

∫

� n

|u|qτy% dx + C2

∫

� n

|u|q−2τy% dx(13)

6 (−C1 + δ)
∫

� n

|u|qτy% dx + Cδ ,

where (2) and (9) together with the Hölder and Young inequalities were used. Col-
lecting these estimates we obtain

(14)
1
q

d
dt

∫

� n

|u|qτy% dx 6
(

%2
0

4(q − 1)
− C1 + δ

) ∫

� n

|u|qτy% dx + Cδ .

Choosing q large and δ small so that Cq,δ := −
(

1
4 (q − 1)−1%2

0 − C1 + δ
)

> 0 we thus
get an estimate

(15)
∫

� n

|u|qτy% dx 6
[∫

� n

|u0|qτy% dx

]
e−qCq,δt +

Cδ

Cq,δ

[
1− e−qCq,δt

]
.

This leads successively to the bounds

‖u(t, u0)‖Lq
τy%( � n) 6 ‖u0‖Lq

τy%( � n) +
(

Cδ

Cq,δ

)1/q

,(16)

lim sup
t→+∞

‖u(t, u0)‖Lq
τy%( � n) 6

(
Cδ

Cq,δ

)1/q

.
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Remark 2. Note that the constants appearing in estimate (15) are independent
of the parameter y varying in � n . They are also uniform when u0 varies in any
bounded subset B ⊂ Lp

%,∞( � n ). Therefore, we can sharpen (16) to the estimates

sup
u0∈B

‖u(t, u0)‖Lq
%,∞( � n) 6 sup

u0∈B
‖u0‖Lq

%,∞( � n) +
(

Cδ

Cq,δ

)1/q

,(17)

lim sup
t→+∞

(
sup

u0∈B
‖u(t, u0)‖Lq

%,∞( � n)

)
6

(
Cδ

Cq,δ

)1/q

.

Remark 3. If C1 > 1
4%2

0, then the estimates (16), (17) are true for any q > 2.
Positivity of Cq,δ can also be achieved by decreasing the value of %0. In particular,
for the weight function given in (4) we have %0 = Cε and the last property is obvious

provided ε > 0 is chosen small enough.

Theorem 2. Let (9) and (10) hold with f : � → � locally Lipschitz continuous.
Then problem (8) defines on Xα

p,%,∞ (α ∈ ( 1
2n/p, 1), 2p > n, % as in (2) a C0

semigroup {T (t)} of global smooth solutions which is bounded dissipative and has
bounded orbits of bounded sets.
� �"!#!%$

. Note that as a consequence of the growth rate (10) and the estimate
(17) we have

(18) ‖f(u(t, u0))‖Lp
%,∞( � n) 6 const.

[
1 + ‖u(t, u0)‖r

Lrp
%,∞( � n)

]
.

Now (18), (17) with q = rp together with [12, §3.3, Excercise 1] or [8, p. 70] justify

global solvability of (8) in Xα
p,%,∞, α ∈ ( 1

2n/p, 1), 2p > n. Boundedness of the orbits
and bounded dissipativeness in Xα

p,%,∞ follows from (17) and the Cauchy integral

formula (see [8, Corollary 4.1.3]). �

1.2. Weak solutions to (8).
So far we have considered smooth global solutions to (8), which were elements of

the class (see [12], [8])

(19) C([0,∞), Xα
p,%,∞) ∩ C1((0,∞), X1−

p,%,∞) ∩ C((0,∞), X1
p,%,∞).

Our next concern will be weak solutions to this problem.

Definition 1. Function u ∈ C([0,∞), Lp
%,∞) is called a weak Lp

%,∞( � n ) global
solution to (8) iff there is a sequence {un} of smooth global solutions to (8) convergent
to u in C([0, τ ], Lp

%,∞( � n )) on each compact interval [0, τ ].
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A notion of a weak Lp
%( � n ) global solution to (8) may be introduced in a similar

way.
It will be important in further studies to require the following condition on f :

(20) f ′(s) 6 C for a.e. s ∈ � .

It is evident that condition (20) is satisfied by the nonlinear term in our sample
problem (1). Existence, uniqueness of the weak solutions and their continuous de-

pendence with respect to the initial data will follow from Theorem 3 below.

Theorem 3. Under the assumptions of Theorem 2 and (20), the problem (8)
defines on each of the phase spaces

(i) L̇p
%,∞( � n ), 2p > n, or

(ii) Lp
τy%( � n ), y ∈ � n , 2p > n,

a C0 semigroup of weak global solutions which is bounded dissipative and has

bounded orbits of bounded sets. These semigroups are extensions of {T (t)} defined
in Theorem 2 (which will not be marked in the notation).
� �"!#!%$

. The proof proceeds in two steps.

Step 1. We start with an Lq
%,∞-estimate of the difference w = u(·, u0)−u(·, v0) of

two smooth solutions to (8) having initial values u0 and v0, respectively. Evidently

w is a smooth solution to

(21)

{
wt = ∆w + f(u(·, u0))− f(u(·, v0)), t > 0, x ∈ � n ,

w(0, x) = u(·, u0)− u(·, v0) =: w0(x), x ∈ � n ,

where [f(u(·, u0)) − f(u(·, v0))]w 6 Cw2 (thanks to (20)). We thus multiply (21)
by |w|q−2wτy% (q > 2, τy%(x) = %(x−y)) and obtain for w exactly the same estimates
as those written in (11)–(12) for u. Because of (20), instead of (13) we now have

(22)
∫

� n

[f(u(·, u0))− f(u(·, v0))]w|w|q−2τy% dx 6 C

∫

� n

|w|qτy% dx

so that w fulfils the relation

(23)
1
q

d
dt

∫

� n

|w|qτy% dx 6
(

%2
0

4(q − 1)
+ C

) ∫

� n

|w|qτy% dx.

Writing C̃ = 1
4 (q − 1)−1%2

0 + C and solving the above differential inequality we get

the bound

(24) sup
t∈[0,τ ]

‖w‖Lq
%,∞( � n) 6 ‖w0‖Lq

%,∞( � n)e
C̃τ , τ > 0.
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Step 2. As a consequence of (24) and the properties of continuous functions
having values in Banach space, the following implication holds.
• If {u0n} ⊂ X1

p,%∞ and u0n → u0 in Lp
%,∞( � n ), then there exists an element of

C([0,∞), L̇p
%,∞( � n )), denoted further by u(·, u0), such that

u(·, u0n) → u(·, u0) in C([0, τ ], L̇p
%,∞( � n )) for each τ > 0.

If u(·, u0) and u(·, v0) are two global weak solutions to (8), we may apply (24) to the
difference of a pair of approximate sequences u(·, u0n) and u(·, v0k) and obtain the
estimate

sup
t∈[0,τ ]

‖u(·, u0)− u(·, v0)‖Lq
%,∞( � n) 6 ‖u0 − v0‖Lq

%,∞( � n)e
C̃τ , τ > 0.

This justifies that u(·, u0) is not only continuous with respect to t but also with
respect to u0 ∈ L̇p

%,∞( � n ), uniformly for t varying on bounded subintervals of [0,∞).
The above considerations and the density of X1

p,%,∞ in L̇p
%,∞( � n ) ensure the ex-

istence of a C0 semigroup of weak global solutions to (8) on L̇p
%,∞( � n ) (2p > n),

which is the extension of the semigroup {T (t)} from Theorem 2. Since the estimates
obtained in (17) hold for such an extension as well, the proof is complete in part

related to the L̇p
%,∞( � n ) spaces.

The proof concerning the phase spaces Lp
τy%( � n ), y ∈ � n , is quite similar. We

only remark that Lp
τy%( � n ) contains a dense subset C∞

0 ( � n ) which is also a subset
of X1

p,%,∞. �

1.3. Asymptotics.
We shall now describe the stability properties of the solutions to (8). First we will

collect some properties of the semigroup {T (t)} defined in Theorem 2.

Lemma 1. The following conditions hold.
(i) There is a {T (t)} positively invariant set C , bounded in X1

p,%,∞, and absorbing

bounded subsets of Xα
p,%,∞ under {T (t)}.

(ii) C is a bounded subset of Cbd( � n ) which is precompact in the topology of almost
uniform convergence on � n .

(iii) C is precompact in Lp
τy%( � n ) for each y ∈ � n .

(iv) clLp
τy%( � n)C does not depend on y ∈ � n and

C̃ := clLp
τy%( � n) C ⊂ Lp

%,∞( � n ), y ∈ � n .

(v) C̃ is bounded and closed in Lp
%,∞( � n ).
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� �"!#!%$
. By Theorem 2 there exists a bounded set B ⊂ Xα

p,%,∞ which absorbs

bounded subsets of Xα
p,%,∞ under {T (t)}. It is now obvious that the positive orbit

γ+(B), as well as any image T (t)γ+(B), t > 0, possess the same properties. There-
fore, item (i) is a consequence of the smoothing action of the sectorial equation (see [8,

Lemma 3.2.1]), which ensures that there exists tB > 0 such that C := T (tB)γ+(B)
is bounded in the norm of X1

p,%,∞.

Concerning (ii), first note that the elements of C and their first order partial

derivatives are bounded in the W 1,p
%,∞( � n ) norm. This ensures, via Sobolev em-

beddings (see Corollary 1), that C , as a family of functions with values in � n , is

uniformly bounded and equicontinuous. It is then purely technical to see that C is
precompact with respect to the topology of almost uniform convergence in � n .

Since any sequence chosen from C contains a subsequence uniformly bounded
in � n and almost uniformly convergent in � n , we obtain easily (iii) as well as the

first assertion in (iv). To complete the proof of (iv) we only need to justify that
clLp

τy%( � n) C ⊂ Lp
%,∞( � n ). If u0 ∈ clLp

τy%( � n) C , then without lack of generality we

may assume that u0 is a limit of a sequence {u0m} almost uniformly convergent in � n

which is simultaneously bounded both in Cbd( � n ) and in Lp
%,∞( � n ). Consequently,

we obtain

(25) ‖u0‖Lp
τy%( � n) 6 ‖u0m − u0‖Lp

τy%( � n) + M, y ∈ � n ,

where M does not depend on y ∈ � n . Letting m tend to ∞ in (25) we see that
u0 ∈ Lp

%,∞( � n ).
Finally, to justify (v) note that since C is bounded in X1

p,%,∞, the constant M

appearing in (25) does not depend on the choice of u0 ∈ C̃ . Therefore, C̃ is bounded

in Lp
%,∞( � n ). Since C̃ ⊂ Lp

%,∞( � n ) is closed in a weaker topology of Lp
τy%( � n ), hence

C̃ is also closed in Lp
%,∞( � n ). Lemma 1 is thus proved. �

Existence of an attractor. Recalling Example 1, we observe that the semigroup
in Theorem 3 cannot be asymptotically compact. Therefore, one cannot expect the

existence of a compact global attractor (in the sense of [11]) for {T (t)} in Xα
p,%,∞.

Indeed, considering the travelling wave ϕ described in Example 1 we observe that

a sequence {ϕ(x + vtn)}, tn → +∞, cannot be convergent in Lp
%,∞( � ) (the Cauchy

condition is violated). Hence (7) with u0 = ϕ has the empty ω-limit set in Lp
%,∞( � ).

Having the C0 semigroup {T (t)} extended onto Lp
τy%( � n ), y ∈ � n , in Theo-

rem 3 (ii) and the property in Lemma 1 (iv) we may define a C0 semigroup {T (t)|
C̃
},

where T (t)|
C̃
is the restriction of T (t) to C̃ .
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Theorem 4. Let 2p > n and let % be as in condition (2). For each y ∈ � n the

semigroup T (t)|
C̃
has a compact global attractorMy (in the sense of [11]) in a metric

subspace C̃ of Lp
τy%( � n ). Furthermore,

(i) My attracts bounded subsets of Xα
p,%,∞, α > 1

2n/p, in Lp
τy%( � n ),

(ii) My = M , y ∈ � n , and M is bounded and closed in Lp
%,∞( � n ).

� �"!#!%$
. By Lemma 1 (iii), T (t)|

C̃
is a semigroup on a compact set. Therefore,

My =
⋂

s>0

clLp
τy%( � n)

⋃

t>s

T (t)C̃

is a compact global attractor in C̃ ⊂ Lp
τy%( � n ).

Next, if B is bounded in Xα
p,%,∞, then B is absorbed by C and hence B is attracted

by My in the topology of Lp
τy%( � n ), which proves (i).

Finally, (ii) follows easily from Lemma 1 (v) and the properties of the compact
global attractor. The proof is complete. �

1.4. Invariance of solutions with respect to translations.
An interesting feature of the problem (8) is that the semigroup of global solutions

corresponding to (8) commutes with the group of translations; i.e.

(26) τzT (t) = T (t)τz, z ∈ � n , t > 0.

Indeed, it is immediate from (18) that if we take a smooth solution originating at u0

and shift its argument by −z we obtain the solution originating at τzu0. Since weak
solutions are obtained from smooth solutions by passing to a limit in L̇p

%,∞( � n ) or
Lp

τy%( � n ), we observe that the property (26) holds also for the extensions of {T (t)}
defined in Theorem 3.

Proposition 1. The setM defined in Theorem 4 is invariant with respect to the
group of translations {τz : z ∈ � n}.
� �"!#!%$

. From (26) we obtain that τzM is an invariant set for {T (t)}. Recalling
that M is bounded in the Lp

%,∞( � n ) norm we observe that τzM is bounded in
each Lp

τy%( � n ) norm. Since C is bounded in X1
p,%,∞ and C absorbs bounded sets

of X1
p,%,∞, we see that T (t)

⋃
y∈ � n

τyC ⊂ C for t sufficiently large and, consequently,

τzM = T (t)τzM ⊂ C̃ . Therefore M , as the maximal bounded invariant set for

{T (t)|
C̃
} in C̃ ⊂ Lp

τz%( � n ), must contain τzM . Since z ∈ � n is arbitrary, the latter
implies that τ−zM ⊂ M . Thus M ⊂ τzM , which completes the proof. �
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Part II

In this part of the paper we want to collect basic properties of the weight func-

tion spaces that are useful in the studies of solvability and asymptotics of parabolic
Cauchy problems. Our main task will be the description of properties of elliptic

second order operators in these spaces, including the description of their domains,
sectoriality, Calderon-Zygmund type estimates and embeddings among the weighted

and the usual Sobolev spaces. Some, mostly one dimensional, studies of such type
may be found in a series of articles [16], [15]. The n-dimensional case presented

here should be useful in the future studies of other Cauchy problems for semilinear
parabolic equations.

2. Weighted spaces and elliptic operators

2.1. Second order elliptic operators on � n .
All function spaces appearing in this part will be complex spaces. We shall consider

a linear differential operator

(27) A :=
n∑

k,l=1

aklDkDl +
n∑

j=1

bjDj + c, Dj := −i
∂

∂xj
,

with coefficients akl, bj and c being bounded and uniformly continuous complex

valued functions. We abbreviate the principal symbol of A by

A0(x, ξ) =
n∑

k,l=1

akl(x)ξkξl, x, ξ ∈ � n

and, following [3, §7], impose on A the ellipticity condition:
• there exist M > 0 and θ0 ∈ (0, 1

2 & ) such that |A−1
0 (x, ξ)| 6 M and σ(A0(x, ξ)) ⊂

{z ∈ C : |arg z| 6 θ0} for each x, ξ ∈ � n , |ξ| = 1.
As known from [3, Corollary 9.5], under the above assumptions we have

Proposition 2. −A is a generator of a strongly continuous analytic semigroup

on Lp( � n ), p ∈ (1, +∞).

We remark that the ellipticity condition above is satisfied, for example, by the

negative Laplacian −∆ = D2
1 + . . . + D2

n, or more generally, by a general second
order operator (27) having real valued top order coefficients akl, k, l = 1, . . . , n, and

such that, for certain c > 0,

A0(x, ξ) > c > 0, x, ξ ∈ � n , |ξ| = 1.
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It is also true that in [3] less regularity for bj and c is required. This is a matter

we will not pursue here. Our concern will be to use Proposition 2 to obtain a
similar result for A acting in weighted spacesW s,p

% ( � n ) instead of the usual Sobolev-
Slobodeckii spaces W s,p( � n ) [19].
We define the weighted norms as

‖ϕ‖W k,p
% ( � n) =

∑

|α|6k

(∫

� n

|Dαϕ(x)|p%(x) dx

)1/p

, k ∈ � , p ∈ (1,∞).

Usually, it is convenient to choose % in the form

%(x) = (1 + |εx|2)γ , x ∈ � n , ε > 0

(see [5]); this function for γ < −n/2 satisfies requirements (2).

2.2. Analytic semigroups on weighted spaces.
The operator A will be studied here both in Lp

%( � n ) and in the spaces Lp
%,∞( � n ),

L̇p
%,∞( � n ) defined below. In applications the semigroup will be constructed in the
stronger topology of Lp

%,∞( � n ) while the global attractor will be compact in a weaker
sense.

The space Lp
%( � n ). First we will prove the following generalization of Proposi-

tion 2.

Theorem 5. For any p ∈ (1, +∞) and % with the properties (2), the operator
−A given in (27) with the domainW 2,p

% ( � n ) generates a strongly continuous analytic
semigroup in Lp

%( � n ).
� �"!#!%$

. The idea will be to “transfer” our considerations from the weighted
spaces to the usual W 2,p( � n )-Lp( � n ) spaces, where Proposition 2 holds. After that,
we shall come back to the weighted spaces saving the estimates for the resolvent
obtained in the W 2,p( � n )-Lp( � n ) setting.
Since C∞

0 ( � n ) ⊂ W 2,p
% ( � n ) ⊂ Lp

%( � n ), the domain of A is dense in Lp
%( � n ). Con-

sider the resolvent equation

(28) λv −Av = f ∈ Lp
%( � n )

and define %̃ := %1/p. It is easy to see that %̃ is still a C2 function possessing the
properties listed in (2). The same remains also true for ˜̃% = %−1/p.

Simple calculations show the validity of the following equivalence:
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• v ∈ W 2,p
% ( � n ) is a solution to (28) if and only if w = %̃v ∈ W 2,p( � n ) is a solution

to

(29) λw − Ã%w = f̃ ∈ Lp( � n )

where f̃ = %̃f and

(30) Ã%w =
n∑

k,l=1

ãklDkDlw +
n∑

j=1

b̃jDjw + c̃w

with the coefficients

ãkl = akl, k, l = 1, . . . , n,(31)

b̃j = bj −
1
p

[ n∑

k=1

akj
Dk%

%
+

n∑

l=1

ajl
Dl%

%

]
, j = 1, . . . , n,

c̃ = c +
1
p

n∑

k,l=1

akl

[(
1 +

1
p

)Dk%Dl%

%2
− DkDl%

%

]
− 1

p

n∑

j=1

bj
Dj%

%
.

By our assumptions, Proposition 2 is applicable to the operator Ã%. This implies

that, for certain a ∈ � , K̃ > 0 and θ ∈ (0, 1
2 & ),

(32) ‖w‖Lp( � n) 6 K̃

|λ− a| ‖f̃‖Lp( � n)

for each λ from the sector

Sa,θ := {z ∈ C : θ 6 |arg(z − a)| 6 & , z 6= a}

(Sa,θ being contained in the resolvent set of Ã). What was said above ensures
that for any λ ∈ Sa,θ and any f ∈ Lp

%( � n ) equation (28) has a unique solution
v = %̃−1w = ˜̃%w ∈ W 2,p

% ( � n ) and, thanks to (32),

(33) ‖v‖Lp
%( � n) = ‖%̃v‖Lp( � n) 6 K̃

|λ− a| ‖f̃‖Lp( � n) =
K̃

|λ− a| ‖f‖Lp
%( � n) .

The main condition in the definition of a sectorial operator [12] is thus verified.

We remark finally that A is closed in Lp
%( � n ). Indeed, for µ as in [3, Theorem 9.4]

(µI − A)−1 is bounded and defined on the whole of Lp
%( � n ). Hence, (µI − A)−1 is

closed and so is A. The proof of Theorem 5 is complete. �
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Our next concern will be the Banach space

Lp
%,∞( � n ) =

{
ϕ ∈

⋂

y∈ � n

Lp
τy%( � n ) : ‖ϕ‖Lp

%,∞( � n) = sup
y∈ � n

‖ϕ‖Lp
τy%( � n) < ∞

}
,

p ∈ [1,∞), where {τy : y ∈ � n} is the group of translations defined in (6).

Remark 4. Note that the completeness of Lp
%,∞( � n ) is a consequence of the

completeness of the space

B( � n , Lp( � n )) =
{
ϕ : � n → Lp( � n ), sup

y∈ � n

‖ϕ(y)‖Lp( � n) < ∞
}
,

see [2, p. 40]. We also remark that, for % integrable and bounded, Lp
%,∞( � n ) will

contain Lp( � n ) as well as L∞( � n ).

In a similar way, for k = 1, 2, . . . and p ∈ [1, +∞), we define Banach spaces

W k,p
%,∞( � n ) =

{
ϕ ∈

⋂

y∈ � n

W k,p
τy%( � n ) : ‖ϕ‖W k,p

%,∞( � n) =
∑

|α|6k

sup
y∈ � n

‖Dαϕ‖Lp
τy%( � n) < ∞

}
.

In Theorem 6 it will be shown that −A generates an analytic semigroup on Lp
%,∞( � n )

in the sense of [13]; that is, the domain of A need not be dense in the Lp
%,∞( � n ).

Furthermore, the spaces W k,p
%,∞( � n ), as well as the fractional powers of A above

L̇p
%,∞( � n ) (see Definition 2), will have “nice” embedding properties (65).
The space Lp

%,∞( � n ). As before, we will essentially use the “calculus for elliptic
operators” developed in [3, Section 9].

Theorem 6. Let p ∈ (1, +∞) and let % satisfy (2). Then −A given in (27) with
the domain W 2,p

%,∞( � n ) generates an analytic semigroup in Lp
%,∞( � n ).

� �"!#!%$
. We proceed as in the proof of Theorem 5 replacing % with τy% (y ∈ � n )

and letting f ∈ Lp
%,∞( � n ) on the right hand side of the equation (28). We next

conclude that for any λ ∈ Sa,θ and any y ∈ � n there is a unique solution wy ∈
W 2,p( � n ) to

(34) λwy − Ãτy%wy = f(τy%)1/p ∈ Lp( � n ),

and that v = (τy%)−1/pwy is independent of y ∈ � n . Indeed, if (τy%)−1/pwy depended
on y, then (35) below would have two different solutions vy1 ∈ W 2,p

τy1%( � n ), vy2 ∈
W 2,p

τy2%( � n ). But, since %/(τy1%) and %/(τy2%) are bounded functions of x ∈ � n

(see (3)), we would have wy1 = (%)1/pvy1 , wy2 = %1/pvy2 ∈ W 2,p( � n ) and they would
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be two different solutions to λw − Ã%w = f%1/p, which is not possible. Therefore,

v ∈ ⋂
y∈ � n

W 2,p
τy%( � n ) solves uniquely the equation

(35) λv −Av = f ∈ Lp
%,∞( � n ).

Next, it is crucial to observe that, under our assumptions on A and %, the constant
K̃ in the estimates of Theorem 5 will remain independent of y ∈ � n . Such a property

is expressed explicitly in [3, Theorem 9.4] (as well as in the remarks just below [3,
Corollary 9.5]). For this we only need to have the coefficients of Ãτy% bounded

uniformly for y ∈ � n , which may be easily seen from (31).
We are thus allowed to rewrite (33) in the form

(36) ‖v‖Lp
τy%( � n) = ‖(τy%)1/pv‖Lp( � n) = ‖wy‖Lp( � n) 6 K̃

|λ− a| ‖f‖Lp
τy%( � n)

and to take lower upper bound on both sides of (36) to get

(37) ‖v‖Lp
%,∞( � n) 6 K̃

|λ− a| ‖f‖Lp
%,∞( � n) .

As previously one may easily notice that A is closed in Lp
%,∞( � n ). The proof is

complete. �

Let us continue for a while the considerations of the above theorem.

Lemma 2. Under the assumptions of Theorem 6 the following versions of the
Calderon-Zygmund estimate hold:

‖(λ−A)−1‖
L (Lp

τy%( � n),W 2,p
τy %( � n)) 6 const.(λ, %), λ ∈ Sa,θ, y ∈ � n ,(38)

‖(λ−A)−1‖
L (Lp

%,∞( � n),W 2,p
%,∞( � n)) 6 const.(λ, %), λ ∈ Sa,θ,

and

‖λ−A‖
L (W 2,p

τy%( � n),Lp
τy%( � n)) 6 const.(λ, %), λ ∈ Sa,θ, y ∈ � n ,(39)

‖λ−A‖
L (W 2,p

%,∞( � n),Lp
%,∞( � n)) 6 const.(λ, %), λ ∈ Sa,θ.

� �"!#!%$
. Indeed, for µ > 0 as introduced in [3, Theorem 9.4] we have

‖wy‖W 2,p( � n) = C‖(λ− Ãτy%)−1f(τy%)1/p‖W 2,p( � n)

6 C‖(µ + Ãτy%)(λ − Ãτy%)−1f(τy%)1/p‖Lp( � n)

6 C|µ + λ|‖(λ− Ãτy%)−1f(τy%)1/p‖Lp( � n) + C‖f(τy%)1/p‖Lp( � n)

6 C|µ + λ|‖wy‖Lp( � n) + C‖f‖Lp
τy%( � n)
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which, for v = (τy%)−1p/w
y , gives the estimate

(40) ‖v(τy%)1/p‖W 2,p( � n) 6 C|µ + λ|‖v‖Lp
τy%( � n) + C‖f‖Lp

τy%( � n) .

Obvious calculations show that

(41) ‖v‖W 2,p
τy%( � n) 6 const.‖v(τy%)1/p‖W 2,p( � n) .

Joining (40) and (41) we get the inequality

(42) ‖v‖W 2,p
τy%( � n) 6 const.(λ, %)

(
‖v‖Lp

τy%( � n) + ‖f‖Lp
τy%( � n)

)
, y ∈ � n ,

which extends to

(43) ‖v‖W 2,p
%,∞( � n) 6 const.(λ, %)

(
‖v‖Lp

%,∞( � n) + ‖f‖Lp
%,∞( � n)

)
.

Therefore (38) follows from (42), (36) and (43), (37) respectively.
The bounds in (39) are immediate consequences of the boundedness of the coeffi-

cients aij , bj and c assumed in Subsection 2.1. The proof is complete. �

Remark 5. In [15] one may find a direct proof that −∆ is sectorial in the weighted
spaces. The above proof is different. It adapts the results known for a class of second

order operators in the usual Sobolev spaces to the case of weighted spaces. A similar
remark concerns the proof of the embeddings of weighted spaces and fractional power

spaces in Subsection 2.3.

Density of the domain of A in weighted spaces. It is well known that
the semigroup in a Banach space will be strongly continuous only if the domain of

its infinitesimal generator is dense. While this property is not necessary to discuss
the solutions to semilinear abstract parabolic equations (see [13]), we would like to

keep it in our considerations. That is why our next concern will be the base space
L̇p

%,∞( � n ) (see definition below), in which an analytic semigroup generated by A will

be strongly continuous.

Definition 2. Ẇ k,p
%,∞( � n ), k ∈ � , p ∈ [1, +∞), denotes a Banach subspace of

W k,p
%,∞( � n ) consisting of all elements ϕ ∈ W k,p

%,∞( � n ) having the following translation
continuity property:

(44) τzϕ → ϕ in W k,p
%,∞( � n ) as |z| → 0.

Remark 6. As shown in [16, Lemma 3.1 (d)], W 2,2
%,∞( � 1 ) is not densely embedded

in L2
%,∞( � 1 ), although this is the case if we consider the inclusion

Ẇ 2,2
%,∞( � 1 ) ⊂ L̇2

%,∞( � 1 )

(see [16, Lemma 3.1 (c)]). We shall prove below such a property in the general case,
showing in particular that C∞

bd ( � n ) is densely embedded in L̇p
%,∞( � n ).
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Lemma 3. For each p ∈ [1,∞) the set
⋂

k∈ ' Ẇ k,p
%,∞( � n ) is dense in L̇p

%,∞( � n ).

� �"!#!%$
. The proof based on approximation by mollifiers (see [1]) is different

then in the onedimensional case [16, Lemma 3.1]. Since the elements of L̇p
%,∞( � n )

are locally integrable and Jε ∈ C∞
0 ( � n ), the convolution

Jε ∗ ϕ(x) =
∫

� n

Jε(z)ϕ(x − z) dz =
∫

{|x−z|<ε}
Jε(x− z)ϕ(z) dz

is well defined for ϕ ∈ L̇p
%,∞( � n ). We then have

|Jε ∗ ϕ(x)τy%1/p(x)| =
∣∣∣∣
∫

� n

J (p−1)/p
ε (z)J1/p

ε (z)ϕ(x − z)τy%1/p(x) dz

∣∣∣∣(45)

6
(∫

� n

Jε(z)|ϕ(x− z)|pτy%(x) dz

)1/p

,

which implies that
∫

� n

|Jε ∗ ϕ(x)τy%1/p(x)|p dx 6
∫

� n

(∫

� n

Jε(z)|ϕ(x− z)|pτy%(x) dz

)
dx(46)

=
∫

� n

Jε(z)
(∫

� n

|ϕ(x − z)|pτy%(x) dx

)
dz 6 ‖ϕ‖p

Lp
%,∞( � n)

.

From (46) we thus get

(47) ‖Jε ∗ ϕ‖Lp
%,∞( � n) 6 ‖ϕ‖Lp

%,∞( � n)

and consequently

‖Jε ∗ ϕ− τz(Jε ∗ ϕ)‖Lp
%,∞( � n) = ‖Jε ∗ (ϕ− τzϕ)‖Lp

%,∞( � n) 6 ‖ϕ− τzϕ‖Lp
%,∞( � n) .

The above condition ensures that

(48) Jε ∗ ϕ ∈ L̇p
%,∞( � n ) whenever ϕ ∈ L̇p

%,∞( � n ).

Next, using the generalized Minkowski inequality (see [17, Chapter 18]), we obtain

‖Jε ∗ ϕ− ϕ‖Lp
%,∞( � n)(49)

6 sup
y∈ � n

[∫

� n

(∫

� n

Jε(z)|ϕ(x − z)− ϕ(x)|τy%1/p(x) dz

)p

dx

]1/p

6 sup
y∈ � n

∫

� n

Jε(z)
[∫

� n

|ϕ(x− z)− ϕ(x)|pτy%(x) dx

]1/p

dz

6 sup
|z|<ε

‖τzϕ− ϕ‖Lp
%,∞( � n) .
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Since ϕ ∈ L̇p
%,∞( � n ), the right hand side of (49) becomes arbitrarily small as

ε → 0+ (see (44)). Therefore,

(50) Jε ∗ ϕ → ϕ in Lp
%,∞( � n ) as ε → 0+.

Note that the estimate (49) indicates why W 2,p
%,∞( � n ) need not be dense in

Lp
%,∞( � n ) and why we need to work in translation continuous subspaces.
To consider partial derivatives of Jε∗ϕ let us recall that DσJε ∈ C∞

0 ( � n ), σ ∈ � n ,

and

(51) Dσ [Jε ∗ ϕ](x) = [DσJε] ∗ ϕ(x), x ∈ � n .

As a consequence, after calculations similar to those in (45)–(48) but with Jε replaced

by DσJε, one may easily verify that (48) can be strengthened to the condition

(52) Dσ [Jε ∗ ϕ] ∈ L̇p
%,∞( � n ) for arbitrary σ ∈ � n whenever ϕ ∈ L̇p

%,∞( � n ).

This justifies that

(53) a map ϕ −→ Jε ∗ ϕ takes L̇p
%,∞( � n ) into

⋂

k∈ '
Ẇ k,p

%,∞( � n ).

Since also (50) holds, the proof is complete. �

Remark 7. A note should be made that if ϕ ∈ Ẇ l,p
%,∞( � n ), then

(54) Dσ [Jε ∗ ϕ] = Jε ∗Dσϕ, |σ| 6 l

(see [1, p. 52]). We may thus repeat calculations of (49), but with Dσϕ instead of

ϕ, and obtain the following stronger version of (50):

(55) Dσ[Jε ∗ ϕ] → Dσϕ in Lp
%,∞( � n ) as ε → 0+ for each |σ| 6 l.

Conditions (55) and (53) ensure that

(56)
⋂

k∈ '
Ẇ k,p

%,∞( � n ) is dense in Ẇ l,p
%,∞( � n ) for each l ∈ � .

Denote by Ck
bd( � n ) the space of complex valued functions having bounded and

continuous all partial derivatives up to the order k. While the elements of Cbd( � n )
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are not translation continuous (counter-example; sinx2), the elements of C1
bd( � n )

have yet such a property since

(∫

� n

|ϕ(x + z)− ϕ(x)|pτy% dx

)1/p

6 sup
x∈ � n

|∇ϕ||z|
(∫

� n

τy% dx

)1/p

.

Due to the Sobolev embedding W 1,p
%,∞( � n ) ⊂ Cbd( � n ) (see Corollary 1 below), we

thus have the inclusions

Ẇ 2,p
%,∞( � n ) ⊂ C1

bd( � n ) ⊂ L̇p
%,∞( � n ),

which together with (53), (55) justifies the following result.

Lemma 4. For any l ∈ � and p ∈ [1,∞), C∞
bd ( � n ) is dense in Ẇ l,p

%,∞( � n ).

The base space L̇p
%,∞( � n ). Recalling Lemma 2 and assuming that the coefficients

of A are bounded and uniformly continuous, we observe that the operator λ−A (λ ∈
Sa,θ) takes Ẇ 2,p

%,∞( � n ) into L̇p
%,∞( � n ) and is a one-to-one closed map between these

spaces. From Lemma 3 we also know that A : Ẇ 2,p
%,∞( � n ) ⊂ L̇p

%,∞( � n ) → L̇p
%,∞( � n )

is densely defined. Although it is true that (see (37))

(57) ‖(λ−A)−1f‖L̇p
%,∞( � n) 6 K̃

|λ− a| ‖f‖L̇p
%,∞( � n) ,

we cannot yet infer that λ is in the resolvent set of the operator A : Ẇ 2,p
%,∞( � n ) ⊂

L̇p
%,∞( � n ) → L̇p

%,∞( � n ) unless we verify that

(58) the image (λ−A)(Ẇ 2,p
%,∞( � n )) is equal to L̇p

%,∞( � n ).

Note that (58) follows easily from Lemma 2 when A has constant coefficients.
Below we will prove that this is also true when the coefficients are bounded and uni-

formly continuous. Thanks to (38) we know that (λ−A)−1 : Lp
%,∞( � n ) → W 2,p

%,∞( � n ).
Take f ∈ L̇p

%,∞( � n ), then (λ−A)−1f = v ∈ W 2,p
%,∞( � n ) and observe that

(λ−A)[τzv − v] = [τzf − f ]−
n∑

k,l=1

[akl − τzakl]DkDlτzv(59)

−
n∑

j=1

[bj − τzbj ]Djτzv − [c− τzc]τzv.
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Equality (59) together with (38) imply the estimate

1
const.(λ, %)

‖τzv − v‖W 2,p
%,∞( � n) 6 ‖(λ−A)[τzv − v]‖Lp

%,∞( � n)(60)

6 ‖τzf − f‖Lp
%,∞( � n)

+
n∑

k,l=1

sup
x∈ � n

|akl(x) − τzakl(x)|‖DkDlτzv‖Lp
%,∞( � n)

+
n∑

j=1

sup
x∈ � n

|bj(x) − τzbj(x)|‖Djτzv‖Lp
%,∞( � n)

+ sup
x∈ � n

|c(x)− τzc(x)|‖τzv‖Lp
%,∞( � n) .

Since f ∈ L̇p
%,∞( � n ), v ∈ W 2,p

%,∞( � n ) and the coefficients ofA are uniformly continu-
ous, the right hand side of (60) tends to zero as z → 0. Consequently, v ∈ Ẇ 2,p

%,∞( � n ),
which ensures (58).
The above considerations may be then summarized as follows.

Theorem 7. Let the coefficients of A be bounded and uniformly continuous,

let % satisfy (2), and let p ∈ (1, +∞). Then the operator −A generates a strongly

continuous analytic semigroup in L̇p
%,∞( � n ).

2.3. Embeddings of the domains of fractional powers.
In this subsection we prove the embeddings of weighted spaces in Cbd( � n ), which

are useful in applications. We start with the following auxiliary inequality.

Lemma 5. Suppose that % satisfies (2). Then

(61) ‖ϕ‖Cbd( � n) 6 c‖ϕ‖θ
W 2,p

%,∞( � n)
‖ϕ‖(1−θ)

Lp
%,∞( � n)

, p > 1
2n, θ ∈ ( 1

2n/p, 1].

� �"!#!%$
. For the prescribed range of parameters, by the usual Sobolev embed-

dings and the interpolation inequality, we get

[%(0)]1/p|ϕ(y)| 6 ‖ϕ(τy%)1/p‖Cbd( � n) 6 c‖ϕ(τy%)1/p‖Hs
p( � n)(62)

6 c‖ϕ(τy%)1/p‖s/2
W 2,p( � n)‖ϕ(τy%)1/p‖1−s/2

Lp( � n)

6 c‖ϕ(τy%)1/p‖s/2
W 2,p( � n)‖ϕ‖

1−s/2

Lp
τy%( � n)

, s ∈ (n/p, 2]

(see [19, §2.4.2 (11), §2.8.1 (16)]). Since conditions in (2) are valid for τy%, y ∈ � n

and the bounds in (2) are independent of y ∈ � n , we then have

(63) ‖ϕ(τy%)1/p‖W 2,p( � n) 6 const.
∑

|α|62

‖Dαϕ‖Lp
τy%( � n) ,
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where const. depends on %0 and C (as in (2)) but not on y ∈ � n . Substituting (63)

into the right hand side of (62) and taking the lower upper bound of both sides we
obtain (61). The proof is complete. �

Based on the well known Henry’s result reported in [12, §1.4, Exercise 11],
Lemma 5 can be next easily extended to the following embedding theorem.

Lemma 6. Let Xα
p,%,∞ = D ((A + ωI)α), α > 0, where A is the sectorial operator

from Theorem 7 and ω > 0 is sufficiently large. Then

(64) Xα
p,%,∞ ⊂ Cbd( � n ) whenever 2p > n, α > 1

2n/p.

As a particular conclusion, from the proof of Lemma 5, we also get

Corollary 1. If % satisfies (2), then

W 1,p
%,∞( � n ) ⊂ Cbd( � n ), p > n,(65)

Xα
p,%,∞ ⊂ Ẇ 1,p

%,∞( � n ), p > 1
2n, α > 1

2 .

Remark 8. Note that the second embedding in (65) requires the assumptions on
A as in Theorem 7, whereas the first expresses the property of W 1,p

%,∞( � n ) itself.
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