Previous |  Up |  Next

Article

Keywords:
indecomposable prime modules; pullback rings; separated modules
Summary:
First, we give a complete description of the indecomposable prime modules over a Dedekind domain. Second, if $R$ is the pullback, in the sense of [9], of two local Dedekind domains then we classify indecomposable prime $R$-modules and establish a connection between the prime modules and the pure-injective modules (also representable modules) over such rings.
References:
[1] J. Dauns: Prime modules. Reine angew Math. 298 (1978), 156–181. MR 0498715 | Zbl 0365.16002
[2] J. Dauns: ARRAY(0xa1e66e8). 1980, pp. 301–303. MR 0584616
[3] J. Dauns: Modules and Rings. Cambridge University Press, Cambridge, 1994. MR 1301329 | Zbl 0817.16001
[4] S. Ebrahimi Atani: On pure-injective modules over pullback rings. Comm. Algebra 28 (2000), 4037–4069. DOI 10.1080/00927870008827074 | MR 1772008 | Zbl 0960.16002
[5] S. Ebrahimi Atani: I-Torsion-free modules over pullback rings. Honam Math. J. 22 (2000), 1–7. MR 1779194 | Zbl 0973.16006
[6] S. Ebrahimi Atani: On secondary modules over Dedekind domains. South-east Asian Bulletin 25 (2001), 1–6. DOI 10.1007/s10012-001-0001-9 | MR 1832737
[7] S. Ebrahimi Atani: On secondary modules over pullback rings. Comm. Algebra 30 (2002), 2675–2685. DOI 10.1081/AGB-120003982 | MR 1908232 | Zbl 1011.13004
[8] L. Fuchs and L. Salce: Modules over Valuation Domains. Lecture Notes in Pure and Applied Mathematics, 1985. MR 0786121
[9] L. Levy: Modules over pullbacks and subdirect sums. J. Algebra 71 (1981), 50–61. DOI 10.1016/0021-8693(81)90106-X | MR 0627425 | Zbl 0508.16008
[10] L. Levy: Mixed modules over $\mathbb{Z}G$, $G$ cyclic of prime order, and over related Dedekind pullbacks. J. Algebra 71 (1981), 62–114. DOI 10.1016/0021-8693(81)90107-1 | MR 0627426
[11] L. Levy: Modules over Dedekind-like rings. J. Algebra 93 (1981), 1–116. MR 0780485
[12] C. P. Lu: Prime submodules of modules. Comm. Univ. Sancti. Paulli 33 (1984), 61–69. Zbl 0575.13005
[13] C. P. Lu: Spectra of modules. Comm. Algebra 23 (1995), 3741–3752. DOI 10.1080/00927879508825430 | MR 1348262 | Zbl 0853.13011
[14] I. G. Macdonald: Secondary representation of modules over a commutative ring. Symposia Matematica 11 (Istituto Nazionale di alta Matematica), Roma, 1973, pp. 23–43. MR 0342506 | Zbl 0271.13001
[15] M. Prest: Model Theory and Modules. London Math. Soc. Lecture Note Series. Cambridge University Press, 1988. MR 0933092
[16] Y. Tiras, A. Tercan and A. Harmanci: Prime modules. Honam Math. J. 18 (1996), 5–15. MR 1402357
[17] S. Yassemi: The dual notion of prime submodules. Arch. Math. 37 (2001), 273–278. MR 1879449 | Zbl 1090.13005
Partner of
EuDML logo