Article
Keywords:
McShane’s partition; Kurzweil-Henstock’s partition
Summary:
Riemann-type definitions of the Riemann improper integral and of the Lebesgue improper integral are obtained from McShane’s definition of the Lebesgue integral by imposing a Kurzweil-Henstock’s condition on McShane’s partitions.
References:
[1] B. Bongiorno: Un nuovo integrale per il problema delle primitive. Le Matematiche 51 (1996), 299–313.
[2] B. Bongiorno, L. Di Piazza and D. Preiss:
A constructive minimal integral which includes Lebesgue integrable functions and derivatives. J. London Math. Soc. 62 (2000), 117–126.
DOI 10.1112/S0024610700008905 |
MR 1771855
[3] A. M. Bruckner, R. J. Fleissner and J. Foran:
The minimal integral which includes Lebesgue integrable functions and derivatives. Coll. Math. 50 (1986), 289–293.
DOI 10.4064/cm-50-2-289-293 |
MR 0857865
[4] R. A. Gordon:
The Integrals of Lebesgue, Denjoy, Perron, and Lebesgue. Graduate Studies in Math. vol. 4, AMS, 1994.
MR 1288751
[7] W. F. Pfeffer:
The Riemann Approach to Integration. Cambridge Univ. Press, Cambridge, 1993.
MR 1268404 |
Zbl 0804.26005
[8] S. Saks:
Theory of the Integral. Dover, New York, 1964.
MR 0167578