[1] R. Balbes and Ph. Dwinger:
Distributive Lattices. University of Missouri Press, Columbia, 1974.
MR 0373985
[2] G. Birkhoff:
Lattice Theory, Third Edition. AMS, Providence, 1967.
MR 0227053
[3] V. Boicescu, A, Filipoiu, G. Georgescu and S. Rudeanu:
Łukasiewicz-Moisil Algebras. North-Holland, Amsterdam, 1991.
MR 1112790
[5] R. Cignoli: Lectures at Buenos Aires University. 2000.
[6] R. Cignoli, M. I. D’Ottaviano and D. Mundici:
Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, 2000.
MR 1786097
[7] R. Cignoli and A. Torrens:
An algebraic analysis of product logic. Multiple Valued Logic 5 (2000), 45–65.
MR 1743553
[9] A. De Simone, M. Navara and P. Pták:
On interval homogeneous orthomodular lattices. Comment. Math. Univ. Carolin. 42 (2001), 23–30.
MR 1825370
[12] G. Georgescu and A. Iorgulescu:
Pseudo $MV$-algebras. 6 (2001), 95–135.
MR 1817439
[13] P. Hájek:
Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
MR 1900263
[14] U. Höhle:
Commutative, residuated $l$-monoids. In: Non-Classical Logics and their Applications to Fuzzy Subset. A Handbook on the Mathematical Foundations of Fuzzy Set Theory, U. Höhle, E. P. Klement (eds.), Kluwer, Dordrecht, 1995.
MR 1345641
[15] J. Jakubík:
A theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete pseudo $MV$-algebras. Czechoslovak Math. J (to appear).
MR 1889037
[17] S. Koppelberg:
Handbook of Boolean Algebras, Vol. 1 (J. Donald Monk, ed.). North Holland, Amsterdam, 1989.
MR 0991565
[18] T. Kowalski and H. Ono: Residuated Lattices: An algebraic glimpse at logics without contraction. Preliminary report, 2000.
[19] F. Maeda and S. Maeda:
Theory of Symmetric Lattices. Springer-Verlag, Berlin, 1970.
MR 0282889