[1] A. Boccuto:
Differential and integral calculus in Riesz spaces. Tatra Mt. Math. Publ. 14 (1998), 293–323.
MR 1651221
[2] M. Duchoň and B. Riečan:
On the Kurzweil-Stieltjes integral in ordered spaces. Tatra Mt. Math. Publ. 8 (1996), 133–141.
MR 1475272
[3] D. H. Fremlin:
Topological Riesz Spaces and Measure Theory. Cambridge Univ. Press, 1994.
MR 0454575
[4] D. H. Fremlin:
A direct proof of the Matthes-Wright integral extension theorem. J. London Math. Soc. 11 (1975), 276–284.
MR 0380345 |
Zbl 0313.06016
[5] L. P. Lee and R. Výborný:
The integral: An easy approach after Kurzweil and Henstock. Cambridge Univ. Press, 2000.
MR 1756319
[6] B. Riečan:
On the Kurzweil integral for functions with values in ordered spaces I. Acta Math. Univ. Comenian. 56–57 (1990), 75–83.
MR 1083014
[7] B. Riečan:
On operator valued measures in lattice ordered groups. Atti Sem. Mat. Fis. Univ. Modena 41 (1993), 235–238.
MR 1225686
[8] B. Riečan and T. Neubrunn:
Integral, Measure and Ordering. Kluwer Academic Publishers/Ister Science, 1997.
MR 1489521
[9] B. Riečan and M. Vrábelová:
On the Kurzweil integral for functions with values in ordered spaces II. Math. Slovaca 43 (1993), 471–475.
MR 1248980
[10] B. Riečan and M. Vrábelová:
On integration with respect to operator valued measures in Riesz spaces. Tatra Mt. Math. Publ. 2 (1993), 149–165.
MR 1251049
[11] B. Riečan and M. Vrábelová:
On the Kurzweil integral for functions with values in ordered spaces III. Tatra Mt. Math. Publ. 8 (1996), 93–100.
MR 1475267