[1] G. Altenburg:
Bessel transformationen in Raumen von Grundfunktionen uber dem Intervall $\Omega = (0, \infty )$ un derem Dualraumen. Math. Nachr. 108 (1982), 197–218.
MR 0695127
[2] M. Belhadj and J. J. Betancor:
Beurling distributions and Hankel transforms. Math. Nachr 233-234 (2002), 19–45.
MR 1879861
[3] M. Belhadj and J. J. Betancor:
Hankel transformation and Hankel convolution of tempered Beurling distributions. Rocky Mountain J. Math 31 (2001), 1171–1203.
DOI 10.1216/rmjm/1021249437 |
MR 1895292
[4] J. J. Betancor and I. Marrero:
The Hankel convolution and the Zemanian spaces $B_\mu $ and $B_\mu ^{\prime }$. Math. Nachr. 160 (1993), 277–298.
MR 1245003
[5] J. J. Betancor and I. Marrero:
Structure and convergence in certain spaces of distributions and the generalized Hankel convolution. Math. Japon. 38 (1993), 1141–1155.
MR 1250341
[6] J. J. Betancor and I. Marrero:
New spaces of type $H_\mu $ and the Hankel transformation. Integral Transforms and Special Functions 3 (1995), 175–200.
DOI 10.1080/10652469508819075 |
MR 1619757
[7] J. J. Betancor and L. Rodríguez-Mesa:
Hankel convolution on distribution spaces with exponential growth. Studia Math. 121 (1996), 35–52.
DOI 10.4064/sm-121-1-35-52 |
MR 1414893
[8] A. Beurling: Quasi-analyticity and General Distributions. Lectures 4 and 5. A.M.S. Summer Institute, Stanford, 1961.
[10] J. Bonet, C. Fernández and R. Meise:
Characterization of the $w$-hypoelliptic convolution operators on ultradistributions. Ann. Acad. Sci. Fenn. Mathematica 25 (2000), 261–284.
MR 1762416
[11] R. W. Braun and R. Meise:
Generalized Fourier expansions for zero-solutions of surjective convolution operators in ${\mathcal D}_{\lbrace w\rbrace }(R)^{\prime }$. Arch. Math. 55 (1990), 55–63.
DOI 10.1007/BF01199116 |
MR 1059516
[12] R. W. Braun, R. Meise and B. A. Taylor:
Ultradifferentiable functions and Fourier analysis. Results in Maths. 17 (1990), 206–237.
DOI 10.1007/BF03322459 |
MR 1052587
[13] F. M. Cholewinski:
A Hankel convolution complex inversion theory. Mem. Amer. Math. Soc. 58 (1965).
MR 0180813 |
Zbl 0137.30901
[14] S. J. L. van Eijndhoven and M. J. Kerkhof: The Hankel transformation and spaces of type $W$. Reports on Appl. and Numer. Analysis, 10. Dept. of Maths. and Comp. Sci., Eindhoven University of Technology, 1988.
[16] C. S. Herz:
On the mean inversion of Fourier and Hankel transforms. Proc. Nat. Acad. Sci. USA, 40 (1954), 996–999.
MR 0063477 |
Zbl 0059.09901
[17] I. I. Hirschman, Jr.:
Variation diminishing Hankel transforms. J. Analyse Math. 8 (1960/61), 307–336.
MR 0157197
[19] I. Marrero and J. J. Betancor:
Hankel convolution of generalized functions. Rendiconti di Matematica 15 (1995), 351–380.
MR 1362778
[21] J. M. Méndez and A. M. Sánchez:
On the Schwartz’s Hankel transformation of distributions. Analysis 13 (1993), 1–18.
DOI 10.1524/anly.1993.13.12.1
[24] K. Stempak:
La theorie de Littlewood-Paley pour la transformation de Fourier-Bessel. C.R. Acad. Sci. Paris 303 (Serie I) (1986), 15–19.
MR 0849618 |
Zbl 0591.42014
[25] G. N. Watson:
A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, 1959.
MR 1349110
[27] A. H. Zemanian:
The Hankel transformation of certain distribution of rapid growth. SIAM J. Appl. Math. 14 (1966), 678–690.
DOI 10.1137/0114056 |
MR 0211211
[28] A. H. Zemanian:
Generalized Integral Transformations. Interscience Publishers, New York, 1968.
MR 0423007 |
Zbl 0181.12701