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Abstract. In this paper we study Beurling type distributions in the Hankel setting. We
consider the space E (w)′ of Beurling type distributions on (0,∞) having upper bounded
support. The Hankel transform and the Hankel convolution are studied on the space E (w)′.
We also establish Paley Wiener type theorems for Hankel transformations of distributions
in E (w)′.

Keywords: Beurling distributions, Hankel transformation, convolution

MSC 2000 : 46F12

1. Introduction

In [2] and [3] we started the study of the Hankel transformation and the Hankel

convolution on new spaces of Beurling type distributions. Our motivation were the
papers of A. Beurling [8], G. Björck [9] and R.W. Braun, R. Meise and B.A. Tay-

lor [12]. In [8] A. Beurling developed the foundations of a general theory of distri-
butions that includes the earlier Schwartz theory [22]. G. Björck [9] completed the

Beurling’s investigations by introducing the space of tempered Beurling distribu-
tions. More recently, R.W. Braun, R. Meise and B.A. Taylor [12] considered a more

general classes of weights and they gave a description via derivatives of the Beurling-
Björck spaces. In this paper we continue our investigations about Hankel transforms

and Hankel convolutions on the space E (w)′ of Beurling type distributions on (0,∞)
having upper bounded support.

Partially supported by DGICYT Grant PB 97-1489 (Spain).
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The Hankel transformation hµ is defined by ([16])

hµ(ϕ)(x) =
∫ ∞

0

(xy)−µJµ(xy)ϕ(y)y2µ+1 dy, x ∈ (0,∞),

where Jµ, as usual, represents the Bessel function of the first kind and order µ ([25]).
Here we always assume that µ > − 1

2 .

By L1,µ we denote the space of all those complex valued and Lebesgue measur-
able functions f on (0,∞) such that

∫ ∞
0
|f(x)|x2µ+1 dx < ∞. Note that, since the

function z−µJµ(z) is bounded on (0,∞), hµ(ϕ) is a continuous bounded function
on (0,∞), provided that ϕ ∈ L1,µ.

The distributional study of the Hankel transformation was started by A.H. Zema-
nian who, in a series of papers ([26], [27] and [28]), investigated the Hankel transforms

on distributions of slow and rapid growth.
A.H. Zemanian considered a variant of the Hankel transform defined through

Hµ(ϕ)(x) =
∫ ∞

0

(xy)1/2Jµ(xy)ϕ(y) dy, x ∈ (0,∞).

It is clear that hµ and Hµ are closely connected.
In 1982 G. Altenburg [1] adapted the Zemanian’s results for the hµ transformation.

He considered the space H constituted by all those complex valued and smooth
functions ϕ on (0,∞) such that, for every m,n ∈ � ,

γm,n(ϕ) = sup
x∈(0,∞)

(1 + x2)m
∣∣∣
( 1
x
D

)n
ϕ(x)

∣∣∣ <∞.

The space H is endowed with the topology generated by the family {γm,n}m,n∈ �
of seminorms. Thus H is a Fréchet space and the Hankel transformation hµ is an
automorphism of H ([1, Satz 5]). The Hankel transformation hµ is defined on the

dual space H ′ of H by transposition.
For every a > 0, the space Ba consists of all those functions ϕ ∈ H such that

ϕ(x) = 0, x > a. Ba is equipped with the topology induced in it by H . Thus Ba is
a Fréchet space and it is clear thatBa is continuously contained inBb, provided that

0 < a < b. The union space B =
⋃
a>0

Ba is endowed with the inductive topology.

Other significant papers concerning to distributional hµ transformation are [20]
and [21].

I. I. Hirschman [17], D.T. Haimo [15] and F.M. Cholewinski [13] investigated the
convolution operation for the Hankel transformation hµ. If f and g are in L1,µ then

the Hankel convolution f #µ g of f and g is defined by

(f #µ g)(x) =
∫ ∞

0

f(y)(µτxg)(y)
y2µ+1

2µΓ(µ+ 1)
dy, a.e. x ∈ (0,∞),
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where a.e. refers to the Lebesgue measure on (0,∞) and the Hankel translation
operator µτx is defined, for every x ∈ (0,∞), by

(µτxg)(y) =
∫ ∞

0

g(z)Dµ(x, y, z)
z2µ+1

2µΓ(µ+ 1)
dz, a.e. y ∈ (0,∞),

and µτ0g = g.
Here the function Dµ, that is the Delsarte kernel, is given by

Dµ(x, y, z) = (2µΓ(µ+ 1))2
∫ ∞

0

(xt)−µJµ(xt)(yt)−µJµ(yt)(zt)−µJµ(zt)t2µ+1 dt,

x, y, z ∈ (0,∞).

The Hankel transform is related to Hankel convolution and Hankel translation
through the following formulas ([4, (3.1) and (3.2)])

hµ(f #µ g) = hµ(f)hµ(g)

and

hµ(µτxg) = 2µΓ(µ+ 1)(x.)−µJµ(x.)hµ(g),

that hold for every f, g ∈ L1,µ and x ∈ (0,∞).
In the sequel, since there is not any confusion, we will write #, τx, x ∈ [0,∞), and

D instead of #µ, µτx, x ∈ [0,∞), and Dµ, respectively.

A straighforward manipulation allows to define, from the #-convolution, the con-
volution for the Hankel transformation Hµ.

The study of the distributional Hankel convolution was started by J. de Sousa-
Pinto [23] who considered only the order µ = 0. More recently, in a series of pa-
pers ([4], [5] and [19]), J. J. Betancor and I. Marrero have investigated the Han-
kel convolution (of any order) in the Zemanian spaces. In [7] J. J. Betancor and

L. Rodríguez-Mesa defined the Hankel transformation and the Hankel convolution
of distributions with exponential growth.

In [2] we have introduced Beurling type function and distribution spaces that
have a nice behaviour for the Hankel transform and the Hankel convolution. We

now collect the main properties of those spaces that will be very useful in the sequel.
We consider, as in [12], the set M of functions defined as follows. A continuous,

positive and non-decreasing function w defined in [0,∞) is inM when w = 0 on [0, 1],
and it satisfies the following conditions

(α) there exists K > 1 such that w(2x) 6 K(1 + w(x)), x ∈ [0,∞),
(β)

∫∞
1
w(x)/x2 dx <∞,
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(γ) log(1 + x) = o(w(x)), as x→∞, and
(δ) the function Ω(x) = w(ex), x ∈ � , is convex.
If w ∈ M we define w(−x) =: w(x), x ∈ [0,∞).
A useful property of the function w is the following ([12, Lemma 1.2])

(1.1) w(x + y) 6 K(1 + w(x) + w(y)) x, y ∈ � .

Assume in the sequel that w ∈ M .

Let a > 0. The space Ba
µ(w) is constituted by all those complex valued and

smooth functions ϕ such that ϕ(x) = 0, x > a, ϕ and hµ(ϕ) are in L1,µ and,

δµn(ϕ) =
∫ ∞

0

enw(x)|hµ(ϕ)(x)|x2µ+1 dx <∞,

for every n ∈ � . On Ba
µ(w) we consider the topology associated to the sys-

tem {δµn}n∈ � of norms. Thus Ba
µ(w) is a Fréchet space. It is obvious that Ba

µ(w)
is continuously contained in Bb

µ(w), provided that 0 < a < b. The union space

Bµ(w) =
⋃
a>0

Ba
µ(w) is equipped with the inductive topology.

Actually, the spaces Ba
µ(w), a > 0, and Bµ(w) are indenpendent of µ. Indeed,

in [2, Proposition 2.10] we establish that, given a > 0, a function ϕ ∈ Ba is inBa
µ(w)

if, and only if, for every l ∈ � ,

εl(ϕ) = sup
x∈(0,∞), k∈ � e−lΩ

∗(x/l)xk
∣∣∣
(1
x

d
dx

)k
ϕ(x)

∣∣∣ <∞,

where the Young conjugate function Ω∗ of Ω is defined, as usual, by

Ω∗(x) = sup
y>0

(xy − Ω(y)), x ∈ [0,∞).

Moreover the topology generated by {εl}l∈ � on Ba
µ(w), a > 0, coincides with the

one defined by {δµn}n∈ � .
Hence, in the sequel we will write Ba(w), a > 0, and B(w) to refer to Ba

µ(w),
a > 0, and Bµ(w), respectively.
For every x ∈ (0,∞), the Hankel translation τx defines a continuous linear mapping

from Bµ(w) into itself ([2, Proposition 2.15, (i)]). The Hankel convolution T # ϕ of

T ∈ Bµ(w)′, the dual space of Bµ(w), and ϕ ∈ Bµ(w) is defined by

(T # ϕ)(x) = 〈T, τxϕ〉, x ∈ [0,∞).

By E (w) we denote the space of multipliers of B(w). E (w) is characterized as the
set of all those functions ψ defined on (0,∞) such that, for every a > 0, there exists
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ϕ ∈ B(w) such that ϕ = ψ on (0, a) ([2, Proposition 3.1]). E (w) is a Fréchet space
when we define the topology associated with the family {Zµa,n}a>0, n∈ � of seminorms,
where, for every a > 0 and n ∈ � ,

Zµa,n(ψ) = inf
ϕ∈B(w),

ϕ=ψ on (0,a)

δµn(ϕ), ψ ∈ E (w).

This topology coincides with the one induced by the pointwise convergence topology

of L (B(w)), the space of linear and continuous mapping from B(w) into itself.
Moreover the space E (w) can be described by derivatives ([2, Proposition 3.2]).
The space E (w)′, the dual space of E (w), can be regarded as a subspace of B(w)′

because B(w) is continuously contained in E (w). E (w)′ is characterized as the
space of Hankel convolution operators of B(w) ([2, Proposition 3.8]). Moreover,
in [2, Proposition 3.7] we proved that if T ∈ E (w)′, then the support of T is upper
bounded, that is, there exists a > 0 such that 〈T, ϕ〉 = 0, provided that ϕ ∈ B(w)
and ϕ(x) = 0, x ∈ (0, a).
If w is the function defined by w(x) = log(1 +x), x ∈ [0,∞), then B(w) coincides

with B and the space E (w) is constituted by all those smooth functions f on (0,∞)
such that the limit

lim
x→0+

(1
x
D

)k
f(x)

exists, for every k ∈ � . Note that in this case w does not satisfy the property (γ).
In [3] the authors defined a tempered Beurling type distributions involving the

Hankel transformation hµ. A complex and smooth function ϕ on (0,∞) is in Hµ(w)
if, and only if, hµ(ϕ) is smooth on (0,∞) and, for every m,n ∈ � ,

αm,n(ϕ) = sup
x∈(0,∞)

emw(x)
∣∣∣
(1
x
D

)n
ϕ(x)

∣∣∣ <∞,

and

βµm,n(ϕ) = sup
x∈(0,∞)

emw(x)
∣∣∣
(1
x
D

)n
hµ(ϕ)(x)

∣∣∣ <∞.

Hµ(w) is a Fréchet space when we define on it the topology associated with the
family of seminorms {αm,n, βµm,n}m,n∈ � . It is clear that hµ is an automorphism
of Hµ(w). The Hankel transform is defined on the dual space Hµ(w)′ of Hµ(w) by
transposition. That is, the Hankel transform h′µ(T ) of T ∈ Hµ(w)′ is the element
of Hµ(w)′ defined by

〈h′µ(T ), ϕ〉 = 〈T, hµ(ϕ)〉, ϕ ∈ Hµ(w).

319



We proved in ([3, Proposition 3.1]) that if T ∈ E (w)′, then the Hankel trans-
form h′µ(T ) of T coincides with the element of Hµ(w)′ generated by the function

F (x) = 2µΓ(µ+ 1)〈T (y), (xy)−µJµ(xy)〉, x ∈ (0,∞).

That is, for every ϕ ∈ Hµ(w),
∫ ∞

0

F (x)ϕ(x)
x2µ+1

2µΓ(µ+ 1)
dx = 〈T, hµ(ϕ)〉, ϕ ∈ Hµ(w).

Also, in [3] we studied the Hankel convolution on Hµ(w) and Hµ(w)′.
We consider in this paper a class of functions M slightly different from the one

defined in [3]. However, the theory developed in [3] can be written now in a similar
way.

In this paper we complete the studies developed in [2] and [3].
As it is easy to see, if there exists C > 0 such that C−1w 6 W 6 Cw, on [0,∞),

then B(w) = B(W ), E (w) = E (W ) and H (w) = H (W ). Usually, it is said
that w and W are equivalent when the above property is satisfied. Other functions

equivalent to those in M are exhibited in [12, p. 221].
Note that, according to [11, p. 56], the condition w = 0 on [0, 1] imposed on the

functions in M is not a real restriction because the spaces B(w) and E (w) do not
change if we replace w by W (x) = max{0, w(x)− w(1)}, x ∈ [0,∞).
This paper is organized as follows. In Section 2 we study Hankel convolution and

Hankel translation on the spaces E (w) and its dual E (w)′ . We analyze the Hankel
transform of the functionals in E (w)′ in Section 3. We prove Paley-Wiener type
theorems for the Hankel transforms on E (w)′.
We will always denote by C a suitable positive constant not necessarily the same

on each ocurrence.

2. Hankel translation and Hankel convolution
on the spaces E (w) and E (w)′

In this section we study the Hankel translation on the space E (w). Then we define
the Hankel convolution on the space E (w)′.
If ψ ∈ E (w) and x ∈ (0,∞) the Hankel translate τxψ of ψ by x is defined by

(2.2) (τxψ)(y) =
∫ x+y

|x−y|
D(x, y, z)ψ(z)

z2µ+1

2µΓ(µ+ 1)
dz, y ∈ (0,∞).

Note that the integral in (2.2) is absolutely convergent for every x, y ∈ (0,∞). Indeed,
if x, y ∈ (0,∞), there exists ϕ ∈ B(w) such that ϕ = ψ on (0, x+ y).
We now prove that the Hankel translations define closed operations in E (w).
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Proposition 2.1. Let x ∈ (0,∞). Then the Hankel translation τx defines a
continuous linear mapping from E (w) into itself.
���������

. Assume that ϕ ∈ E (w). Let a > 0. There exists ψ ∈ B(w) such that
ϕ = ψ on (0, x+ a). Then we can write

(τxϕ)(y) =
∫ x+y

|x−y|
ψ(z)D(x, y, z)

z2µ+1

2µΓ(µ+ 1)
dz, y ∈ (0, a).

Moreover, according to [2, Proposition 2.15, (i)], the function τxψ ∈ B(w). Thus we
have proved that τxϕ ∈ E (w).
Suppose now {ϕν}ν∈ � is a sequence in E (w) such that ϕν → 0, as ν →∞, in E (w).

Let ε, a > 0 and m ∈ � . There exists ν0 ∈ � such that, for every ν > ν0, we can find
ψν ∈ B(w) for which ψν = ϕν , on (0, a+ x), and

δµm(ψν) =
∫ ∞

0

emw(y)|hµ(ψν)(y)|y2µ+1 dy < ε.

Then, by [4, (3.1)] and [17, Theorem 2.a], it follows that

δµm(τxψν) = 2µΓ(µ+ 1)
∫ ∞

0

emw(y)|(xy)−µJµ(xy)hµ(ψν)(y)|y2µ+1 dy

6 δµm(ψν) < ε, ν > ν0.

Moreover, τxψν = τxϕν , on (0, a), for each ν > ν0. Hence

Z
µ
a,m(τxϕν) 6 δµm(τxψν) < ε, ν > ν0.

Thus we see that τxϕν → 0, as ν →∞, in E (w), and the proof is completed. �

Proposition 2.2. Let ϕ ∈ E (w). The (nonlinear) mapping Fϕ defined by
Fϕ(x) = τxϕ, x ∈ [0,∞), is continuous from [0,∞) into E (w).
���������

. Let x0 ∈ [0,∞). Assume that {xν}ν∈ � \{0} is a sequence in [0,∞) such
that xν → x0, as ν →∞. We choose b > 0 such that xν ∈ [0, b), ν ∈ � .
Let a > 0 and m ∈ � . There exists ψ ∈ B(w) such that ψ = ϕ, on (0, a+b). Then

(τxϕ)(y) = (τxψ)(y), x ∈ (0, b) and y ∈ (0, a). According to [2, Proposition 2.15, (ii)],
if ε > 0 there exists ν0 ∈ � such that

δµm(τxνψ − τx0ψ) < ε, ν > ν0.

Then, since τxνψ− τx0ψ ∈ B(w) and τxνψ− τx0ψ = τxνϕ− τx0ϕ, on (0, a), for every
ν ∈ � ,

Z
µ
a,m(τxνϕ− τx0ϕ) 6 δνm(τxνψ − τx0ψ) < ε, ν > ν0.

Hence, τxνϕ→ τx0ϕ, as ν →∞, in E (w).
Thus, we have proved the continuity of the function Fϕ. �
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Proposition 2.1 allows us to give the following definition for the Hankel convolution

on E (w)′×E (w). Let T ∈ E (w)′ and ϕ ∈ E (w). The Hankel convolution T #ϕ of T
and ϕ is defined through

(T # ϕ)(x) = 〈T, τxϕ〉, x ∈ [0,∞).

Note that, according to Proposition 2.2, T # ϕ is a continuous function on [0,∞).
Next we will show that T # ϕ ∈ E (w).

Proposition 2.3. Let T ∈ E (w)′. Then the linear mapping FT defined by

FT (ϕ) = T # ϕ, ϕ ∈ E (w),

is continuous from E (w) into itself.
���������

. Since T ∈ E (w)′, according to [2, Proposition 3.2], there exists b > 0
such that 〈T, ϕ〉 = 0, for every ϕ ∈ E (w) for which ϕ(x) = 0, x ∈ (0, b). Indeed,
since T ∈ E (w)′ [2, Proposition 3.2] implies that there exist b, C > 0 and l ∈ � such
that

|〈T, ϕ〉| 6 C sup
x∈(0,b), k∈ � e−lΩ

∗(k/l)xk
∣∣∣
(1
x
D

)k
ϕ(x)

∣∣∣, ϕ ∈ E (w),

where Ω∗ denotes the Young conjugate of the function Ω defined by Ω(x) = w(ex),
x ∈ � .
Hence, if ϕ ∈ E (w) and ϕ(x) = 0, x ∈ (0, b), then 〈T, ϕ〉 = 0.
Let a > 0 and ϕ ∈ E (w). There exists ψ ∈ B(w) such that ϕ = ψ, on (0, a+ b).

Moreover, for every x ∈ (0, a) and y ∈ (0, b), one has

(τxϕ)(y) =
∫ x+y

|x−y|
D(x, y, z)ϕ(z)

z2µ+1

2µΓ(µ+ 1)
dz

=
∫ a+b

0

D(x, y, z)ψ(z)
z2µ+1

2µΓ(µ+ 1)
dz = (τxψ)(y).

Hence, we can write

FT (ϕ)(x) = 〈T, τxϕ〉 = 〈T, τxψ〉 = (T # ψ)(x), x ∈ (0, a).

Now according to [2, Proposition 3.8], T # ψ ∈ B(w).
Thus we have proved that FT (ϕ) ∈ E (w).
Suppose now that {ϕν}ν∈ � is a sequence in E (w) such that ϕν → ϕ, as ν → ∞,

in E (w), and FT (ϕν) → ψ, as ν → ∞, in E (w). By invoking Proposition 2.1, for
every x ∈ [0,∞), τxϕν → τxϕ, as ν → ∞, in E (w). Hence, since T ∈ E (w)′, for
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every x ∈ [0,∞), (T #ϕν)(x) → (T #ϕ)(x), as ν →∞. Moreover, since convergence
in E (w) implies pointwise convergence in [0,∞), (T #ϕν)(x) → ψ(x), as ν →∞, for
every x ∈ [0,∞). Hence ψ = T # ϕ. Thus, by invoking the closed graph theorem,
we conclude that FT is a continuous mapping from E (w) into itself. �

Note that if ϕ ∈ E (w) then ϕ defines an element Tϕ in the dual space B(w)′

of B(w) by

〈Tϕ, ψ〉 =
∫ ∞

0

ϕ(x)ψ(x)
x2µ+1

2µΓ(µ+ 1)
dx, ψ ∈ B(w).

Indeed, let ψ ∈ Ba(w), with a > 0. Then, there exists ϕ′ ∈ B(w) such that ϕ′ = ϕ,
on (0, a). Hence according to Parseval equality for Hankel transforms, we have

〈Tϕ, ψ〉 =
∫ a

0

ϕ(x)ψ(x)
x2µ+1

2µΓ(µ+ 1)
dx

=
∫ ∞

0

ϕ′(x)ψ(x)
x2µ+1

2µΓ(µ+ 1)
dx

=
∫ ∞

0

hµ(ϕ′)(y)hµ(ψ)(y)
y2µ+1

2µΓ(µ+ 1)
dy.

Then, it follows that

|〈Tϕ, ψ〉| 6 sup
y∈(0,∞)

|hµ(ϕ′)(y)|
∫ ∞

0

|hµ(ψ)(y)| y2µ+1

2µΓ(µ+ 1)
dy 6 Cδµ0 (ψ).

Thus the continuity of Tϕ is shown.
Let ϕ ∈ E (w) and S ∈ E (w)′. According to [2, Section 3] we can define the Hankel

convolution Tϕ # S of Tϕ and S as the element of B(w)′ given by

〈Tϕ # S, ψ〉 = 〈Tϕ, S # ψ〉 =
∫ ∞

0

ϕ(x)(S # ψ)(x)
x2µ+1

2µΓ(µ+ 1)
dx, ψ ∈ B(w).

On the other hand, by Proposition 2.3 the Hankel convolution S#ϕ defined through

(S # ϕ)(x) = 〈S, τxϕ〉, x ∈ (0,∞),

is in E (w), and thus in B(w)′ .
In the following we will prove that TS#ϕ = Tϕ # S. Thus the distributional

convolution defined in this Section can be seen as a special case of the generalized

Hankel convolution introduced in [2, Section 3].
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Proposition 2.4. Let ϕ ∈ E (w) and S ∈ E (w)′. Then TS#ϕ = Tϕ # S.

���������
. Let ψ ∈ Ba(w), where a > 0. We are going to prove that

∫ ∞

0

〈S, τxϕ〉ψ(x)x2µ+1 dx =
∫ ∞

0

ϕ(x)〈S, τxψ〉x2µ+1 dx.

As was shown in the proof of Proposition 2.3, we can write

〈S, τxϕ〉 = 〈S, τxϕ′〉, x ∈ (0, a),

for some ϕ′ ∈ B(w), such that ϕ = ϕ′, on (0, b), for some b > 0 such that S # ψ ∈
Bb(w) ([2, Proposition 3.8]).
Hence, by [2, Proposition 2.22], it follows that

∫ ∞

0

〈S, τxϕ〉ψ(x)x2µ+1 dx =
∫ a

0

〈S, τxϕ′〉ψ(x)x2µ+1 dx

=
∫ ∞

0

〈S, τxϕ′〉ψ(x)x2µ+1 dx

=
∫ ∞

0

ϕ′(x)〈S, τxψ〉x2µ+1 dx

=
∫ ∞

0

ϕ(x)〈S, τxψ〉x2µ+1 dx.

Thus the proof is completed. �

We can define, according to Proposition 2.3, the Hankel convolution on E (w)′ ×
E (w)′. Let T, S ∈ E (w)′. The Hankel convolution T #S of T and S is the functional
on E (w) defined through

〈T # S, ϕ〉 = 〈T, S # ϕ〉, ϕ ∈ E (w).

Note that from Proposition 2.3 it follows that T # S ∈ E (w)′.

3. The Hankel transform on the space E (w)′.

As was mentioned in the introduction (Section 1) the authors introduced in [3]

the function space Hµ(w) that can be seen as a Hankel version of the space Sw

considered by G. Björck [9]. The dual space Hµ(w)′ of Hµ(w) can be called a space
of tempered Beurling type distributions. The Hankel transformation is an auto-
morphism of Hµ(w) and this transformation is defined on Hµ(w)′ by transposition.
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That is, if T ∈ Hµ(w)′ the Hankel transform h′µT of T is the element of Hµ(w)′

defined by
〈h′µ(T ), ϕ〉 = 〈T, hµ(ϕ)〉, ϕ ∈ Hµ(w).

The space E (w)′ can be identified with a subspace of Hµ(w)′. The Hankel trans-
form h′µ takes a special form on E (w)′. If T ∈ E (w)′ then the Hankel transform h′µ(T )
coincides with the element of H ′

µ generated by the function ([3, Proposition 3.1])

F (x) = 2µΓ(µ+ 1)〈T (y), (xy)−µJµ(xy)〉, x ∈ [0,∞).

That is, for every ϕ ∈ Hµ(w),

〈T, hµ(ϕ)〉 =
∫ ∞

0

〈T (y), (xy)−µJµ(xy)〉ϕ(x)x2µ+1 dx.

We will write

h′µ(T )(x) = 2µΓ(µ+ 1)〈T (y), (xy)−µJµ(xy)〉, x ∈ [0,∞),

provided that T ∈ E (w)′.
Note that, according to [2, Proposition 3.4], if T ∈ E (w)′ the function h′µ(T ) can

be extended to the whole complex plane by defining

h′µ(T )(z) = 2µΓ(µ+ 1)〈T (y), (yz)−µJµ(yz)〉, z ∈ � ,

because, for every z ∈ � , the function fz defined by fz(y) = (yz)−µJµ(yz), y ∈ � , is
in the space He( � ) of even and entire functions. According to [2, Proposition 3.4],
h′µ(T ) is also in He( � ). Indeed, we have that

fz(y) =
∞∑

k=0

(−1)k
(yz)2k

22k+µk!Γ(µ+ k + 1)
, y, z ∈ � ,

where the series converges in He( � ), for every z ∈ � . Then, since convergence
in He( � ) implies convergence in E (w), we conclude that

h′µ(T )(z) = 2µΓ(µ+ 1)
∞∑

k=0

(−1)k
z2k

22k+µk! Γ(µ+ k + 1)
〈T (y), y2k〉, z ∈ � .

Hence h′µ(T ) is an even and entire function.
We now prove a Paley-Wiener type theorem for the Hankel transforms of the

distributions in E (w)′. We characterize those even and entire functions that can be
represented as Hankel transforms of functionals in E (w)′.
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Proposition 3.1. Let a > 0. Assume that F is an even and entire function. The
following assertions are equivalent.

(i) There exists λ > 0 such that, for every ε > 0, we can find Cε > 0 for which
∫ ∞

−∞
|F (χ+ iη)|e−λw(χ) dχ 6 Cεe(a+ε)|η|, η ∈ � .

(ii) There exists λ > 0 such that, for every ε > 0, we can find Cε > 0 for which

|F (χ+ iη)| 6 Cεeλw(χ)+(a+ε)|η|, χ, η ∈ � .
(iii) There exists T ∈ E (w)′ such that F = h′µ(T ) and that 〈T, ϕ〉 = 0, provided that

ϕ ∈ B(w) and ϕ(x) = 0, x 6 a+ ε, for some ε > 0.
���������

. (i) ⇒ (ii). It is sufficient to take into account that w satisfies the
property in (1.1) and to use the Cauchy integral formula as in [9, p. 365].

(ii) ⇒ (iii). Suppose that (ii) holds. We define the functional T on Hµ(w) by

〈T, ϕ〉 =
∫ ∞

0

F (x)hµ(ϕ)(x)
x2µ+1

2µΓ(µ+ 1)
dx, ϕ ∈ Hµ(w).

Then T ∈ Hµ(w)′. Indeed, since w satisfies the property (γ), we have

|〈T, ϕ〉| 6 C

∫ ∞

0

|F (x)| |hµ(ϕ)(x)|x2µ+1 dx

6 C

∫ ∞

0

|hµ(ϕ)(x)|eλw(x)x2µ+1 dx

6 Cβµl,0(ϕ), ϕ ∈ Hµ(w).

Here λ is given by (ii) and l ∈ � is chosen large enough.
We now choose a function ψ ∈ B1(w) such that

∫∞
0
ψ(x)x2µ+1 dx = 2µΓ(µ + 1)

[2, Proposition 2.18]). According to [3, Proposition 2.9], for every ϕ ∈ Hµ(w),
ϕ# ψm → ϕ, as m → ∞, in Hµ(w), where ψm(x) = m2µ+1ψ(mx), x ∈ [0,∞) and
m ∈ � . Hence T # ψm → T , as m→∞, in the weak* topology of Hµ(w)′.
We define, for every m ∈ � , Tm = T # ψm. From the distributional interchange

formula [3, Proposition 3.5] it follows that

(3.1) h′µ(Tm) = h′µ(T )hµ(ψm), m ∈ � .
Moreover, for every ϕ ∈ Hµ(w), one has

〈h′µ(T ), ϕ〉 = 〈T, hµ(ϕ)〉

=
∫ ∞

0

F (x)hµ(hµϕ)(x)
x2µ+1

2µΓ(µ+ 1)
dx

=
∫ ∞

0

F (x)ϕ(x)
x2µ+1

2µΓ(µ+ 1)
dx.
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Hence h′µ(T ) coincides with the functional generated by F onHµ(w). Thus (3.1) can
be rewritten as

(3.2) h′µ(Tm) = Fhµ(ψm), m ∈ � .

By taking now into account [2, Propositions 2.6 and 2.10], where we established a

Paley-Wiener type theorem for Hankel transform of the functions in B(w), and our
hypothesis (ii), we deduce from (3.2) that Tm ∈ Ba+1/m(w), m ∈ � .
Let ϕ ∈ B(w) such that ϕ(x) = 0, x 6 a + ε, for some ε > 0. Since Tm(x) = 0,

provided that x > a+ ε and m is large enough, we have

〈T, ϕ〉 = lim
m→∞

〈Tm, ϕ〉 = lim
m→∞

∫ ∞

a+ε

Tm(x)ϕ(x)
x2µ+1

2µΓ(µ+ 1)
dx = 0.

Thus (iii) is established.
(iii) ⇒ (i). Suppose that F = h′µT , for some T ∈ E (w)′. By proceeding as in the

proof of Proposition 3.1 we can see that, for a certain a > 0, the following property
holds: 〈T, ϕ〉 = 0, provided that ϕ ∈ E (w) and ϕ(x) = 0, when x > a + ε, for some

ε > 0.
Let ε > 0. According to [2, Proposition 2.18] we choose a function ζ ∈ Ba+ε(w)

such that ζ(x) = 1, x ∈ (0, a+ 1
2ε). Then, we can write

〈T, ψ〉 = 〈T, ζψ〉+ 〈T, (1− ζ)ψ〉 = 〈T, ζψ〉, ψ ∈ E (w).

Since T ∈ Ba+ε(w)′, there exists C > 0 and l ∈ � for which

|F (z)| 6 C

∫ ∞

0

elw(x)|hµ((tz)−µJµ(tz)ζ(t))(x)|x2µ+1 dx, z ∈ � .

We now argue, with minor modifications, as in the proof of [9, Theorem 1.4.1,

pp. 366–367] to obtain after some manipulations

∫ ∞

−∞
|hµ(((χ+ iη)t)−µJµ((χ+ iη)t)ζ(t))(x)|e−λw(χ) dχ

=
∫ ∞

−∞
|hµ((xt)−µJµ(xt)ζ(t))(χ + iη)|e−λw(χ) dχ

6 C

∫ ∞

−∞
|hµ((xt)−µJµ(xt)ζ(t))(χ)|e−λw(χ)/K dχe(a+ε)|η|,

η, χ ∈ � , and λ > 0.

To see the last inequality we must take into account that all the functions are even
and [9, Lemma 1.3.11]. Here K represents the positive constant appearing in (1.1).
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We choose k ∈ � such that ∫∞
0

e−kw(t) dt <∞. This is possible because w satisfies
the property (γ). If λ = K(Kl+ k) we can write

∫ ∞

−∞
|F (χ+ iη)|e−λw(χ) dχ

6 C

∫ ∞

−∞

∫ ∞

0

|hµ(((χ + iη)t)−µJµ((χ+ iη)t)ζ(t))(x)|

× e−λw(χ)+lw(x)x2µ+1 dx dχ

= C

∫ ∞

0

elw(x)

∫ ∞

−∞
|hµ(((χ+ iη)t)−µJµ((χ+ iη)t)ζ(t))(x)|

× e−λw(χ) dχx2µ+1 dx

6 C

∫ ∞

0

e−λw(χ)/K

∫ ∞

0

elw(x)τχ(|hµ(ζ)|)(x)x2µ+1 dx dχ e(a+ε)|η|

6 C

∫ ∞

0

e(lK−λ/K)w(χ)

∫ ∞

0

x2µ+1

∫ x+χ

|x−χ|
elw(z)|hµ(ζ)(z)|

×D(x, χ, z)z2µ+1 dz dx dχ e(a+ε)|η|

6 C

∫ ∞

0

e−kw(χ) dχ
∫ ∞

0

elw(z)|hµ(ζ)(z)|z2µ+1 dz e(a+ε)|η|, η ∈ � .

We have used that w satisfies the property in (1.1) and that the Hankel translation
operator is a contractive operator in L1,µ ([24, p. 17]).

Thus the proof is finished. �
Next we prove a useful consequence of Proposition 3.1.

Proposition 3.2. Let T ∈ E (w)′. Then, for certain λ, a > 0 the following
property holds: for every k ∈ � and ε > 0 there exists C > 0 for which

∣∣∣
(1
z
D

)k
h′µ(T )(z)

∣∣∣ 6 Ceλw(Re z)+(a+ε)|Im z|, z ∈ � .
���������

. We can write

h′µ(T )(z) = 2µΓ(µ+ 1)
∞∑

l=0

(−1)l
z2l

22l+µl! Γ(µ+ l + 1)
〈T (y), y2l〉, z ∈ � .

Hence, for every k ∈ � ,
(1
z
D

)k
h′µ(T )(z)

= (−1)k2µΓ(µ+ 1)
∞∑

l=0

(−1)l
z2l

22l+µ+kl! Γ(µ+ k + l + 1)
〈T (y), y2(l+k)〉

= 2µΓ(µ+ 1)〈T (y), (−1)k(zy)−µ−kJµ+k(zy)y2k〉
= 2µΓ(µ+ 1)(−1)k〈y2kT (y), (zy)−µ−kJµ+k(zy)〉, z ∈ � .
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Thus we see that

(1
z
D

)k
h′µ(T )(z) =

Γ(µ+ 1)(−1)k

Γ(µ+ k + 1)2k
h′µ+k(Tk)(z), z ∈ � and k ∈ � ,

where Tk = y2kT ∈ E (w)′, for every k ∈ � .
Now the proof can be finished by arguing as in the proof of Proposition 3.1. �

In [3, Section 3] we defined the Hankel convolution onHµ(w)′×Hµ(w) as follows.
If T ∈ Hµ(w)′ and ϕ ∈ Hµ(w) the Hankel convolution T #ϕ of T and ϕ is given by

(T # ϕ)(x) = 〈T, τxϕ〉, x ∈ [0,∞).

In [3, Proposition 3.2] it was established that, for every T ∈ Hµ(w)′ and ϕ ∈ Hµ(w),
T # ϕ is a continuous function on [0,∞) and there exist C > 0 and r ∈ � for which
|(T # ϕ)(x)| 6 Cerw(x), x ∈ [0,∞). Moreover, according to Proposition 2.3, if
T ∈ E (w)′ and ϕ ∈ Hµ(w) then T # ϕ ∈ E (w).

In the following we complete the above results.

Proposition 3.3. Let T ∈ E (w)′ and ϕ ∈ Hµ(w). Then T # ϕ is in H .

���������
. SinceHµ(w) is contained in E (w), according to Proposition 3.3, T#ϕ ∈

E (w). Moreover, by [3, Proposition 3.5], h′µ(T # ϕ) = h′µ(T )hµ(ϕ). Hence, from
Proposition 3.2 and by using the Leibniz rule, we infer that, for every m,n ∈ � ,

(3.3) sup
x∈(0,∞)

emw(x)
∣∣∣
(1
x
D)n(h′µ(T )(x)hµ(ϕ)(x)

)∣∣∣ <∞.

In particular, since w satisfies the property (γ), the function h′µ(T )hµ(ϕ) is in H .
Hence

hµ(h′µ(T )hµ(ϕ)) = h′µ(h
′
µ(T # ϕ)) = T # ϕ

is also in H ([1, Satz 5]). �

Next we establish a Paley-Wiener type theorem concerning, in some sense, the
singular support of the distributions in E (w)′.
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Proposition 3.4. Let T ∈ E (w)′ and a > 0. We list three properties.
(i) There exists a function f ∈ E (w) on (a,∞), that is, fϕ ∈ B(w) provided that

ϕ ∈ B(w) and ϕ(x) = 0, x 6 a+ ε, for some ε > 0, such that T coincides with
the distribution generated by f on (a,∞), that is, if ϕ ∈ B(w) and ϕ(x) = 0,
x ∈ (0, a+ ε), for a certain ε > 0, then

〈T, ϕ〉 =
∫ ∞

0

f(x)ϕ(x)
x2µ+1

2µΓ(µ+ 1)
dx.

(ii) There exists n ∈ � such that, for every m ∈ � , we can find Cm > 0 for which

|h′µ(T )(χ+ iη)| 6 Cmenw(χ)+(a+1/m)|η|, |η| 6 mw(χ), χ, η ∈ � .

(iii) There exists a smooth function f on (a,∞) such that T coincides with the
distribution generated by f on (a,∞).

Then, (i) ⇒ (ii) ⇒ (iii).
���������

. (i) ⇒ (ii). Let m ∈ � \ {0}. According to [2, Proposition 2.18] we
choose a function ζ ∈ Ba+1/(2m)(w) such that ζ(x) = 1, x ∈ (0, a+ 1/(4m)). Then,
we can write

〈T, ϕ〉 = 〈T, ζϕ〉+ 〈T, (1− ζ)ϕ〉, ϕ ∈ B(w).

It is clear that the functional T1 = Tζ is in B(w)′ and 〈T1, ψ〉 = 0, provided that
ψ ∈ B(w) and ψ(x) = 0, x 6 a+ 1/(2m) + ε, for a certain ε > 0.
On the other hand, by defining T2 = T − T1 one has

〈T2, ϕ〉 = 〈T, (1− ζ)ϕ〉 = 〈T, (1− ζ)βϕ〉, ϕ ∈ B(w),

where β is a suitable function in B(w). We have taken into account that T ∈ E (w)′.
Since, for every ϕ ∈ B(w), the function (1 − ζ)βϕ ∈ B(w) and (1 − ζ(x))β(x)×

ϕ(x) = 0, x ∈ (0, a+ 1/(4m)), it follows that

〈T2, ϕ〉 =
∫ ∞

a

f(x)(1− ζ(x))β(x)ϕ(x)
x2µ+1

2µΓ(µ+ 1)
dx

= 〈f(1− ζ)β, ϕ〉, ϕ ∈ B(w),

or, in other words, T2 = f(1− ζ)β. Moreover, since f ∈ E (w) on (a,∞), f(1− ζ)β
is in B(w).
From Proposition 3.1 we infer that there exist n ∈ � and C > 0 such that

|h′µ(T1)(χ+ iη)| 6 Cenw(χ)+(a+1/m)|η|, χ, η ∈ � .
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Moreover, by [2, Proposition 2.6], for every l ∈ � there exists C > 0 such that

|h′µ(T2)(χ+ iη)| 6 Ce−lw(χ)+b|η|, χ, η ∈ � ,
for a certain b > 0.
Hence, we can write, for every l ∈ � ,

|h′µ(T )(χ+ iη)| 6 C(enw(χ)+(a+1/m)|η| + e(−l+bm)w(χ)),

for each χ, η ∈ � and |η| 6 mw(χ).
Then, by choosing l large enough we obtain

|h′µ(T )(χ+ iη)| 6 Cenw(χ)+(a+1/m)|η|, χ, η ∈ � and |η| 6 mw(χ).

(ii) ⇒ (iii). According to [10, Remark 1.2, (c)], we can assume that w is a smooth
function having bounded derivatives in [0,∞).
Our objective is to find a smooth function f on (a,∞) such that

〈T, ϕ〉 =
∫ ∞

a

f(x)ϕ(x)
x2µ+1

2µΓ(µ+ 1)
dx,

provided that ϕ ∈ B(w) and ϕ(x) = 0, x 6 a+ ε, for some ε > 0.
We choose ϕ ∈ B1(w) such that

∫∞
0 ϕ(x)x2µ+1 dx = 2µΓ(µ + 1) and we define,

for every k ∈ � , ϕk(x) = k2µ+2ϕ(kx), x ∈ [0,∞). It is clear that ϕk ∈ B(w), for
each k ∈ � .
Let k ∈ � . We can write by [4, (3.1)]

(T # ϕk)(x) = 〈T, τxϕk〉 = 〈h′µ(T ), hµ(τxϕk)〉

=
∫ ∞

0

h′µ(T )(y)hµ(ϕk)(y)(xy)−µJµ(xy)y2µ+1 dy, x ∈ (0,∞).

We now prove that, for each x ∈ (0,∞) and m ∈ � ,
∫ ∞

0

h′µ(T )(y)hµ(ϕk)(y)(xy)−µJµ(xy)y2µ+1 dy(3.4)

=
1
2

∫

Γm(w)

h′µ(T )(y)hµ(ϕk)(y)(xy)−µH(1)
µ (xy)y2µ+1 dy,

where Γm(w) represents a Hörmander type path ([18]), that is, a representation
of Γm(w) is the following

z(t) = t+mw(t)i, |t| > 1,

and

z(t) = t+mw(1)i, |t| 6 1,
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for every m ∈ � . Here H(1)
µ denotes the Hankel function of the first kind and

order µ ([25, p. 73]).

Let x ∈ (0,∞) and m ∈ � . To see (3.4) we proceed firstly as in [14, Lemma 6.1].
Thus we show that, for every m ∈ � ,

∫ ∞

0

h′µ(T )(y)hµ(ϕk)(y)(xy)−µJµ(xy)y2µ+1 dy

=
1
2

∫ ∞

−∞
h′µ(T )(y + imw(1))hµ(ϕk)(y + imw(1))

× (x(y + imw(1)))−µH(1)
µ (x(y + imw(1)))(y + imw(1))2µ+1 dy.

We now use the well known Cauchy theorem. According to [2, Proposition 2.6]

and Proposition 3.1 and by invoking [14, (5.3.c) and (5.3.d)], we can deduce that,
for a certain d > 0 and for every n ∈ � , there exists C > 0 such that

|h′µ(T )(χ+ iη)hµ(ϕk)(χ+ iη)(x(χ + iη))−µH(1)
µ (x(χ+ iη))| 6 Ce−xη+d|η|−nw(χ),

for χ, η ∈ � and χ2 + η2 > 1.
Hence, if χ, η ∈ � , χ2 + η2 > 1 and 0 6 η 6 mw(χ), one has, for each n ∈ � ,

|h′µ(T )(χ+ iη)hµ(ϕk)(χ+ iη)(x(χ + iη))−µH(1)
µ (x(χ+ iη))| 6 Ce−nw(χ).

Thus, we can deduce that

∫

CR,m

h′µ(T )(z)hµ(ϕk)(z)(xz)−µH(1)
µ (xz)z2µ+1 dz → 0, as R→∞,

where CR,m represents the piece of the circle χ2 + η2 = R2 between η = mw(1) and
the path η = mw(χ).
Hence we have shown that (3.4) holds.
We have proved that, for every x ∈ (0,∞) and m ∈ � ,

(3.5) (T # ϕk)(x) =
1
2

∫

Γm(w)

h′µ(T )(y)hµ(ϕk)(y)(xy)−µH(1)
µ (xy)y2µ+1 dy.

Suppose now that ε > 0 and x > a + ε. By invoking again Proposition 3.1
and [14, (5.3.c)], we can write, for a certain n ∈ � ,

|(x(χ + iη))−µH(1)
µ (x(χ+ iη))h′µ(T )(χ+ iη)| 6 Ce(m(a+ε/2−x)+n)w(χ)

6 Ce(−εm/2+n)w(χ),

for each η = mw(χ), η2 + χ2 > 1 and m ∈ � .
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Moreover, from [14, (5.3.b)] one has

|hµ(ϕk)(z)| = |hµ(ϕ)(z/k)| 6 Ce|Im z|/k
∫ 1

0

|ϕ(x)|x2µ+1 dx, z ∈ � and k ∈ � .

Then, by taking into account that w satisfies the property (γ) and the additional
smoothness properties assumed at the beginning of the proof, we can choose a large

enough m ∈ � so that the integral in (3.5) is absolutely convergent and there exists
a continuous function g defined on � such that g is absolutely integrable on � and

|h′µ(T )(y)hµ(ϕk)(y)(xy)−µH(1)
µ (xy)y2µ+1|y=mw(t) 6 g(t), t ∈ � ,

and k ∈ � is large enough. Here m and g do not depend on x > a+ ε.
Also it is not hard to see that

hµ(ϕk)(y) = hµ(ϕ)(y/k) → hµ(ϕ)(0) = 1, as k →∞,

for every y ∈ (0,∞).
Hence, the dominated convergence theorem allows us to conclude that if ε > 0

there exists mε ∈ � such that, for every x > a+ ε,

(T # ϕk)(x) →
1
2

∫

Γmε (w)

h′µ(T )(y)(xy)−µH(1)
µ (xy)y2µ+1 dy, as k →∞.

Let ψ ∈ Bb(w), with b > a, such that ψ(x) = 0, x 6 a + ε, for some ε > 0. We
can write

〈T, ψ〉 = lim
k→∞

〈T # ϕk , ψ〉(3.6)

= lim
k→∞

∫ ∞

0

(T # ϕk)(x)ψ(x)
x2µ+1

2µΓ(µ+ 1)
dx

=
1
2

∫ ∞

0

ψ(x)
x2µ+1

2µΓ(µ+ 1)

∫

Γmε (w)

h′µ(T )(y)(xy)−µH(1)
µ (xy)y2µ+1 dy dx,

for a certain mε ∈ � .
We now define a function f on (a,∞) as follows. For every k ∈ � , we choose m1/k

such that m1/k < m1/(k+1) − 1, and we define the function fk by

fk(x) =
1
2

∫

Γm1/k
(w)

h′µ(T )(y)(xy)−µH(1)
µ (xy)y2µ+1 dy, x ∈ (a+ 1/k,∞).

Note that if x ∈ (a+ 1/k,∞) and l ∈ � , l > k, then fk(x) = fl(x). The function f
is defined by

f(x) = fk(x), x ∈ (a+ 1/k,∞) and k ∈ � .
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According to (3.6) we can write

〈T, ψ〉 =
∫ ∞

a

f(x)ψ(x)
x2µ+1

2µΓ(µ+ 1)
dx,

provided that ψ ∈ B(w) and ψ(x) = 0, x 6 a+ ε, for some ε > 0.
Moreover, f is smooth on (a,∞). Indeed, let ε > 0. There exists k0 ∈ � such that

f(x) =
1
2

∫

Γm1/k
(w)

h′µ(T )(y)(xy)−µH(1)
µ (xy)y2µ+1 dy, x ∈ (a+ ε,∞) and k > k0.

According to [14, (5.1.b)], by proceeding as above, we can show that, for every l ∈ �
(1
x
D

)l
f(x) =

(−1)l

2

∫

Γm1/k
(w)

h′µ(T )(y)(xy)−µ−lH(1)
µ+l(xy)y

2l+2µ+1 dy,

x ∈ (a+ ε,∞),

where k is large enough.

Thus the proof is finished. �

As was mentioned in Section 1, if w(x) = log(1 + x), x ∈ [0,∞), then the space
B(w) coincides with the space B. In that case, the space E (w) of multipliers of B is
the space E of complex valued and smooth functions on (0,∞) such that, for every
k ∈ � , the limit

lim
x→0

( 1
x
D

)k
f(x)

exists. In particular, if f is a smooth function on (a, b), where 0 < a < b 6 ∞, then
fϕ ∈ B, for every ϕ ∈ B such that ϕ(x) = 0, x /∈ (c, d), where a < c < d < b. The

converse of the last assertion is also true.
Although the function w(x) = log(1 + x), x ∈ [0,∞), does not satisfy the prop-

erty (γ), by proceeding as in the proof of Proposition 3.4 we can obtain the following
result that seems to be new in the theory of Hankel transformation on Zemanian

spaces.

Proposition 3.5. Let T ∈ E ′ and a > 0. The following two assertions are
equivalent.

(i) There exists a smooth function f on (a,∞) such that

〈T, ϕ〉 =
∫ ∞

a

f(x)ϕ(x)
x2µ+1

2µΓ(µ+ 1)
dx,

for every ϕ ∈ B such that ϕ(x) = 0, x 6 a+ ε, for some ε > 0.
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(ii) There exists n ∈ � such that, for every m ∈ � , we can find Cm > 0, for which

|h′µ(T )(χ+iη)| 6 Cm(1+|χ|)ne(a+1/m)|η|, χ, η ∈ � and |η| 6 m log(1+|χ|).

Remark 3. We do not know if the function f defined in the proof of (ii) ⇒ (iii)
in Proposition 4.4 has the following property: fϕ ∈ B(w), for every ϕ ∈ B(w) such
that ϕ(x) = 0, x 6 a+ε, for some ε > 0. We conjecture that f satisfies this property
and then the statements (i) and (ii) in Proposition 3.4 are equivalent. Note that the
Proposition 3.5 states that this property holds when w(x) = log(1 + x), x ∈ [0,∞).

An immediate consequence of Proposition 3.5 is the following.

Proposition 3.6. Let T ∈ E ′ and a > 0. Assume that P is a polynomial. Then
the following two assertions are equivalent.

(i) There exists a smooth function f on (a,∞) such that

〈T, ϕ〉 =
∫ ∞

a

f(x)ϕ(x)
x2µ+1

2µΓ(µ+ 1)
dx,

for every ϕ ∈ B such that ϕ(x) = 0, x 6 a+ ε, for some ε > 0.
(ii) There exists a smooth function f on (a,∞) for which

〈P (∆µ)T, ϕ〉 =
∫ ∞

a

f(x)ϕ(x)
x2µ+1

2µΓ(µ+ 1)
dx,

for every ϕ ∈ B such that ϕ(x) = 0, x 6 a+ ε, for some ε > 0.
���������

. It is sufficient to take into account [1, Lemma 8, (b), (6)] and Proposi-

tion 3.5. �

Note that from Proposition 3.6 it follows, in particular, that if T ∈ E ′ and P (∆µ)T
is smooth on (0,∞), for some polynomial P , then T is also smooth on (0,∞).
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