Previous |  Up |  Next

Article

Keywords:
quasi hamiltonian semigroups; super hamiltonian semigroups; quasi commutative semigroups; quasi-groups; strong semilattices of semigroups
Summary:
The concept of super hamiltonian semigroup is introduced. As a result, the structure theorems obtained by A. Cherubini and A. Varisco on quasi commutative semigroups and quasi hamiltonian semigroups respectively are extended to super hamiltonian semigroups.
References:
[1] M.  Chacron and G. Thierrin: $\sigma $-reflexive semigroups and rings. Canad. Math. Bull. 15 (1972), 185–188. DOI 10.4153/CMB-1972-033-3 | MR 0306361
[2] A.  Cherubini Spoletini and A.  Varisco: Quasi commutative semigroups and $\sigma $-reflexive semigroups. Semigroup Forum 19 (1980), 313–321. DOI 10.1007/BF02572524 | MR 0569810
[3] A. Cherubini Spoletini and A.  Varisco: Quasi hamoltoniam semigroups. Czechoslovak Math. J. 33(108) (1983), 131–140. MR 0687426
[4] Z. L.  Gao and K. P. Shum: On cyclic commutative po-semigroups. PU.M.A. 18 (1997), 261–273. MR 1630495
[5] H.  Lal: Quasi commutative primary semigroups. Mat. Vesnik 12 (1975), 271–278. MR 0382504 | Zbl 0317.20037
[6] N. P.  Mukherjee: Quasi commutative semigroups I. Czechoslovak Math. J. 22(97) (1972), 449–453. MR 0308301
[7] C. S. H.  Nagore: Quasi commutative Q-semigroups. Semigroup Forum 15 (1978), 189–193. DOI 10.1007/BF02195752 | MR 0473062 | Zbl 0378.20046
[8] M.  Petrich: Lectures in Semigroups. Akademie Verlag, Berlin, 1977. MR 0447437 | Zbl 0369.20036
[9] B.  Pondělíček: On weakly commutative semigroups. Czechoslovak. Math. J. 25(100) (1975), 20–23. MR 0387460
[10] M. S.  Putcha: Bands of $t$-archimedean semigroups. Semigroup Forum 6 (1973), 232–239. DOI 10.1007/BF02389126 | MR 0374303
[11] K. P.  Shum, X. M.  Ren and Y. Q.  Guo: On Quasi-Left Groups. Groups-Korea’94, Walter de Gruyter & Co., Berlin, New York, 1995, pp. 285–288. MR 1476972
[12] K. P. Shum and Y. Q.  Guo: Regular semigroups and its generalizations. Lecture Series  181 (Pure & Applied Math.), Marcell Dekker INC., 1996, pp. 181–225. MR 1408694
Partner of
EuDML logo