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Abstract. The concept of super hamiltonian semigroup is introduced. As a result, the
structure theorems obtained by A. Cherubini and A. Varisco on quasi commutative semi-
groups and quasi hamiltonian semigroups respectively are extended to super hamiltonian
semigroups.

Keywords: quasi hamiltonian semigroups, super hamiltonian semigroups, quasi commu-
tative semigroups, quasi-groups, strong semilattices of semigroups

MSC 2000 : 20M10

1. Introduction

A semigroup S is called quasi commutative if for all a, b ∈ S, ab = bra holds for

some positive integer r > 1. The concept of quasi commutativity was first introduced
by N. P. Mukherjee [6] in 1971. Later on, M. Chacron and G. Thierrin [1] called a

semigroup S a σ-reflexive semigroup if and only if S satisfies the following condition:

∀ a, b ∈ S, ∃m = m(a, b) > 1, ab = (ba)m.

Quasi commutative semigroups, cyclic communicative semigroups and σ-reflexive

semigroups were then studied by a number of authors, for example, see [2], [4], [5]
and [7].

In generalizing the concept of quasi commutativity, A. Cherubini and A. Varisco [3]
in 1983 called a semigroup S a quasi hamiltonian semigroup if for every a, b ∈ S,

there exists two positive integers r, s such that ab = bras. Thus, it is clear that
the class of quasi hamiltonian semigroups contains the class of quasi commutative
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semigroups as its special subclass. On the other hand, B. Pondělíček [9] in 1975

called a semigroup S a weakly commutative semigroup if for every a, b ∈ S, (ab)n ∈
bSa for some positive integer n > 1. Thus, quasi commutative semigroups, quasi
hamiltonian semigroups and σ-reflexive semigroups can be regarded as special weakly

commutative semigroups. It was stated by M. Petrich [8, Corollary II.5.6] that a
weakly commutative semigroup is a semilattice of archimedean semigroups. Along

with this direction, A. Cherubini and A. Varisco proved in [2] and [3] respectively
the following structure theorems:

(i) A semigroup S is σ-reflexive if and only if S is a semilattice of σ-reflexive
archimedean semigroups Sα and for every a, b ∈ S with ab 6= ba, ab belongs to

a subgroup of S. (See [3, Theorem 2.8].)
(ii) A semigroup S is a quasi hamiltonian semigroup if and only if S is a semilattice

of archimedean quasi hamiltonian semigroups, and every subsemigroup of S,
generated by two elements, is a duo semigroup. (See [3, Theorem 1.9].)

Also, it was shown by N.P. Mukherjee in [6] that:
(iii) Every quasi commutative semigroup S is uniquely expressible as a semilattice

of archimedean semigroups Sα. (See [6, Theorem 4].)
Inspired by the above definitions and results in the literature, we now call a semi-

group S a generalized quasi hamiltonian semigroup if for every a, b ∈ S, it holds
(ab)n = bras for some positive integers n, r, s satisfying 2n < r + s. In view of the

results mentioned by M. Chacron and G. Thirerrin (see [1, Theorems 1 and 2]), it
is natural to call the generalized quasi hamiltonian semigroups with central idem-

potents the super hamiltonian semigroups. What we are going to show is that for
a generalized quasi hamiltonian semigroup S, S is super hamiltonian if and only if

S is a strong semilattice of quasi-groups. This theorem describes the structure of su-
per hamiltonian semigroups and as a consequence, we observe that the quasi-groups

are the basic building blocks for super hamiltonian semigroups. Thus, the structure
theorem for the quasi hamiltonian semigroups in [3] is extended.

The reader is referred to M. Petrich [8] for notations if it is necessary.

2. Super hamiltonian semigroups

We shall first give some definitions that will be used throughout the paper.

Definition 2.1. An element a in a semigroup S is called a quasi regular element

if there exists an integer n > 1 and x ∈ S such that an = anxan. We shall call a
semigroup a quasi regular semigroup if all elements of S are quasi regular.

Quasi regular semigroups have been extensively investigated (see [12]). It is trivial
to see that a quasi regular semigroup contains some idempotents.
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Definition 2.2 [11]. A quasi regular semigroup S is called a quasi-group if there

exists only one idempotent in S, that is, |E| = 1.

Definition 2.3 [10]. A semigroup S is called a t-archimedean semigroup if for

all a, b ∈ S, there exists a positive integer n > 1 such that bn ∈ aS ∩ Sa.

The following result is stated in [3] for quasi-hamiltonian semigroups. In fact, it

can be easily verified that the result holds for generalized quasi hamiltonian semi-
groups as well.

Proposition 2.4. A generalized quasi hamiltonian semigroup S is a semilattice

of t-archimedean semigroups Sα.

Hereafter, we shall write the generalized quasi hamiltonian semigroup S as S =⋃
α∈Y

Sα, where Sα is a t-archimedean subsemigroup of S for every α ∈ Y . We also

call Sα the t-archimedean component of the semigroup S.
We now prove the following lemmas which are the crucial lemmas in the estab-

lishment of our main theorem.

Lemma 2.5. Let S be a generalized quasi hamiltonian semigroup. Then every

t-archimedean component of S contains a unique idempotent of S.
���������

. Since S is a generalized quasi hamiltonian semigroup, by Proposi-
tion 2.4, S =

⋃
α∈Y

Sα, where each Sα is a t-archimedean subsemigroup of S. Now,

let a ∈ S. Then a ∈ Sα for some α ∈ Y . Since Sα is a subsemigroup of S, we have

〈a〉 ⊆ Sα. Since S is a generalized quasi hamiltonian semigroup, we have (a2)n = aras

for some positive integers n, r and s, that is, a2n = ar+s with 2n 6= r + s. It is now

clear that a is periodic and hence there exists a positive integer m > 1 such that
am = e ∈ Sα. We claim that the idempotent e in Sα is unique. In fact, if we let e,

f be idempotents of Sα, then, since Sα is a t-archimedean semigroup, there exists
x, y in Sα such that e = fx and f = ye. This leads to e = fe = ye = f . Thus,

Sα contains exactly one idempotent of S. The proof is completed. �

Lemma 2.6. The t-archimedean semigroup Sα of a generalized quasi hamiltonian

semigroup S is a quasi-group.
���������

. In view of Lemma 2.5, we only need to prove that the t-archimedean
component Sα of S is quasi regular. To this end, we let a ∈ Sα. Then we consider the

elements a, e in Sα, where e is the unique idempotent in Sα, by Lemma 2.5. Since
Sα is a t-archimedean semigroup, there exist elements u, v, x in Sα and a positive

integer n > 1 such that an = eu = ve and e = anx. These equalities now lead to
an = ean = anxan. Thereby, Sα is a quasi-group. �
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Summing up Lemma 2.5 and Lemma 2.6, we obtain the following result.

Lemma 2.7. If S is a generalized quasi hamiltonian semigroup then S is a semi-

lattice of quasi-groups Sα.

The above lemma improves the result of A. Cherubini and A. Varisco [3] for
quasi hamiltonian semigroups. Also, we observe that for every element a in a quasi-

group Sα, an is an idempotent for some positive integer n. Thus, it is trivial to see
that in the quasi-group Sα, the idempotent is in the center of Sα.

By using Lemma 2.7, we now establish the following theorem for super hamiltonian

semigroups.

Theorem 2.8 (Main Theorem). Let S be a generalized quasi hamiltonian semi-

group. Then S is a super hamiltonian semigroup if and only if S is a strong semilattice

of quasi-groups Sα.

���������
. ( ⇒ ) Let S be a super hamiltonian semigroup. Then by Lemma 2.7,

S =
⋃

α∈Y

Sα, where Y is a semilattice and each Sα is a quasi-group for every α ∈ Y .

Now, let eα be the identity element of the quasi-group Sα. Define a mapping ϕα,β :
Sα −→ Sβ by aϕα,β = aeβ for any a ∈ Sα and α, β ∈ Y with α > β. It is trivial
to see that ϕα,α is the identity mapping on Sα. Also, by the multiplication on S,

aeβ ∈ Sβ. Suppose that a, b are two arbitrary elements of Sα. Then we have

(ab)ϕα,β = (ab)eβ

= aeβbeβ (since eβ is in the center of Sβ)

= aϕα,βbϕα,β.

This shows that ϕα,β is a homomorphism. Moreover, since S is a super hamiltonian
semigroup, we can easily verify that eαeβ = eγ for α, β, γ ∈ Y with αβ = γ, where

eγ is the idempotent in Sγ . Thus, for α > β > γ with a ∈ Sα, we have

aϕα,βϕβ,γ = (aeβ)eγ = aeγ = aϕα,γ .

Because the element a is arbitrarily chosen in S, we have ϕα,βϕβ,γ = ϕα,γ . Hence, the
maps ϕα,β are structure homomorphisms of the strong semilattice of quasi-groups Sα,

that is, S = [Y ; Sα, ϕα,β ] is a strong semilattice of the quasi-groups Sα.

(⇐ ) Let S be a strong semilattice of the quasi-groups Sα. Then for any element
a ∈ S and any idempotent e ∈ E ⊆ S, there exist some α, β ∈ Y such that a ∈ Sα and
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e ∈ Sβ∩E. Since Sαβ ∈ S = [Y ; Sα, ϕα,β ] and ϕα,β are the structure homomorphisms

of the strong semilattice S = [Y ; Sα, ϕα,β ], we have

ae = aϕα,αβeϕβ,αβ

= eϕβ,αβaϕα,αβ (since Sαβ is a quasi-group)

= ea.

This shows that e lies in the center of S as well. Since S itself has been assumed to be
a generalized quasi hamiltonian semigroup, we deduce that S is super hamiltonian.

This finishes the proof. �

Remark. A. Cherubini and A. Varisco have remarked in [2] that the idempotents
of a quasi commutative semigroup S are in the center of S. Our Theorem 2.8 extends

their remark from quasi commutative semigroups to super hamiltonian semigroups.

Example 2.9. Let Sα = {a, b, e}, Sβ = {c, f} and Sαβ = {u, v, w, x, y, z} be
respectively quasi-groups on a semilattice Y = {α, β, αβ}.

The Cayley tables of Sα, Sβ and Sαβ are respectively the following

Sα: ∗ a b e
a b e e
b e e e
e e e e

Sβ: ∗ c f
c f f
f f f

Sαβ : ∗ u v w x y z
u u v w x y z
v v u y z w x
w w z u y x v
x x y z u v w
y y x v w z u
z z w x v u y

Define the mapping θα,αβ : Sα → Sαβ by x 7−→ u for any x ∈ Sα; θβ,αβ : Sβ →
Sαβ by y 7−→ u for any y ∈ Sβ and let θα,α be the identity mapping for any
α ∈ Y . Then we can easily check that the mappings θα,β form a family of structure

homomorphisms of the strong semilattice S = [Y ; Sα; θα,β], where S =
⋃

α∈Y

Sα =

Sα∪Sβ∪Sαβ . By using the above structure homomorphisms, we obtain the following
Cayley table to the semigroup S:
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∗ a b e c f u v w x y z
a b e e u u u v w x y z
b e e e u u u v w x y z
e e e e u u u v w x y z
c u u u f f u v w x y z
f u u u f f u v w x y z
u u u u u u u v w x y z
v v v v v v v u y z w x
w w w w w w w z u y x v
x x x x x x x y z u v w
y y y y y y y x v w z u
z z z z z z z w v v u y

Then, we can check that S is a super hamiltonian semigroup, but S is not com-
mutative and in fact not quasi hamiltonian as well (indeed, it suffices to consider

e.g. v, w).
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