Article
Keywords:
jet of fibered manifold morphism; contact element; Weil bundle; natural operator
Summary:
For every product preserving bundle functor $T^\mu $ on fibered manifolds, we describe the underlying functor of any order $(r,s,q), s\ge r\le q$. We define the bundle $K_{k,l}^{r,s,q} Y$ of $(k,l)$-dimensional contact elements of the order $(r,s,q)$ on a fibered manifold $Y$ and we characterize its elements geometrically. Then we study the bundle of general contact elements of type $\mu $. We also determine all natural transformations of $K_{k,l}^{r,s,q} Y$ into itself and of $T(K_{k,l}^{r,s,q} Y)$ into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from $Y$ to $K_{k,l}^{r,s,q} Y$.
References:
[1] R. Alonso:
Jet manifold associated to a Weil bundle. Arch. Math. (Brno) 36 (2000), 195–199.
MR 1785036 |
Zbl 1049.58007
[2] A. Cabras and I. Kolář:
Prolongation of projectable tangent valued forms. To appear in Rendiconti Palermo.
MR 1942654
[3] M. Doupovec and I. Kolář:
On the jets of fibered manifold morphisms. Cahiers Topo. Géom. Diff. Catégoriques XL (1999), 21–30.
MR 1682575
[4] C. Ehresmann: Oeuvres complètes et commentées. Parties I-A et I-2. Cahiers Topo. Géom. Diff. XXIV (1983).
[6] I. Kolář:
Covariant approach to natural transformations of Weil functors. Comment. Math. Univ. Carolin. 27 (1986), 723–729.
MR 0874666
[7] I. Kolář, P. W. Michor and J. Slovák:
Natural Operations in Differential Geometry. Springer-Verlag, 1993.
MR 1202431
[8] I. Kolář and W. M. Mikulski:
Natural lifting of connections to vertical bundles. Supplemento ai Rendiconti del Circolo Mat. di Palermo, Serie II 63 (2000), 97–102.
MR 1758084
[10] W. M. Mikulski:
Product preserving bundle functors on fibered manifolds. Arch. Math. (Brno) 32 (1996), 307–316.
MR 1441401 |
Zbl 0881.58002
[12] J. Tomáš:
Natural operators transforming projectable vector fields to products preserving bundles. Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 59 (1999), 181–187.
MR 1692269
[13] A. Weil:
Théorie des points proches sur les variétés différentielles. Collogue de C.N.R.S, Strasbourg, 1953, pp. 111–117.
MR 0061455