Previous |  Up |  Next

Article

Keywords:
Pettis integrable function space; copy of $c_0$; copy of $\ell _{\infty }$; countably additive vector measure; WRNP; CRP
Summary:
Assuming that $(\Omega , \Sigma , \mu )$ is a complete probability space and $X$ a Banach space, in this paper we investigate the problem of the $X$-inheritance of certain copies of $c_0$ or $\ell _{\infty }$ in the linear space of all [classes of] $X$-valued $\mu $-weakly measurable Pettis integrable functions equipped with the usual semivariation norm.
References:
[1] P.  Cembranos and J.  Mendoza: Banach Spaces of Vector-Valued Functions. Lecture Notes in Math. 1676. Springer, 1997. MR 1489231
[2] J.  Diestel: Sequences and Series in Banach Spaces. GTM 92. Springer Verlag. New York-Berlin-Heidelberg-Tokyo, 1984. MR 0737004
[3] J.  Diestel and J.  Uhl: Vector Measures. Math Surveys 15. Amer. Math. Soc. Providence, 1977. MR 0453964
[4] L.  Drewnowski: Copies of $\ell _{\infty }$ in an operator space. Math. Proc. Camb. Phil. Soc. 108 (1990), 523–526. DOI 10.1017/S0305004100069401 | MR 1068453
[5] L.  Drewnowski, M.  Florencio and P. J.  Paúl: The space of Pettis integrable functions is barrelled. Proc. Amer. Math. Soc. 114 (1992), 687–694. DOI 10.1090/S0002-9939-1992-1107271-2 | MR 1107271
[6] D.  van Dulst: Characterizations of Banach Spaces not containing $\ell _{1}$. CWI Tract. Amsterdam, 1989. MR 1002733
[7] J. C.  Ferrando: On sums of Pettis integrable random elements. Quaestiones Math. 25 (2002), 311–316. DOI 10.2989/16073600209486018 | MR 1931282 | Zbl 1036.46010
[8] F. J.  Freniche: Embedding $c_0$ in the space of Pettis integrable functions. Quaestiones Math. 21 (1998), 261–267. DOI 10.1080/16073606.1998.9632045 | MR 1701785 | Zbl 0963.46025
[9] E.  Hewitt and K.  Stromberg: Real and Abstract Analysis. GTM 25. Springer Verlag, 1965. MR 0367121
[10] K.  Musial: The weak Radon-Nikodým property in Banach spaces. Studia Math. 64 (1979), 151–173. DOI 10.4064/sm-64-2-151-174 | MR 0537118 | Zbl 0405.46015
Partner of
EuDML logo