Article
Keywords:
Pettis integrable function space; copy of $c_0$; copy of $\ell _{\infty }$; countably additive vector measure; WRNP; CRP
Summary:
Assuming that $(\Omega , \Sigma , \mu )$ is a complete probability space and $X$ a Banach space, in this paper we investigate the problem of the $X$-inheritance of certain copies of $c_0$ or $\ell _{\infty }$ in the linear space of all [classes of] $X$-valued $\mu $-weakly measurable Pettis integrable functions equipped with the usual semivariation norm.
References:
[1] P. Cembranos and J. Mendoza:
Banach Spaces of Vector-Valued Functions. Lecture Notes in Math. 1676. Springer, 1997.
MR 1489231
[2] J. Diestel:
Sequences and Series in Banach Spaces. GTM 92. Springer Verlag. New York-Berlin-Heidelberg-Tokyo, 1984.
MR 0737004
[3] J. Diestel and J. Uhl:
Vector Measures. Math Surveys 15. Amer. Math. Soc. Providence, 1977.
MR 0453964
[6] D. van Dulst:
Characterizations of Banach Spaces not containing $\ell _{1}$. CWI Tract. Amsterdam, 1989.
MR 1002733
[9] E. Hewitt and K. Stromberg:
Real and Abstract Analysis. GTM 25. Springer Verlag, 1965.
MR 0367121