Previous |  Up |  Next

Article

Keywords:
$MV$-algebra; archimedean $MV$-algebra; completeness; singular $MV$-algebra; higher degrees of distributivity
Summary:
In this paper we deal with the of an $MV$-algebra $\mathcal A$, where $\alpha $ and $\beta $ are nonzero cardinals. It is proved that if $\mathcal A$ is singular and $(\alpha,2)$-distributive, then it is . We show that if $\mathcal A$ is complete then it can be represented as a direct product of $MV$-algebras which are homogeneous with respect to higher degrees of distributivity.
References:
[1] D.  Byrd and J. T.  Lloyd: Closed subgroups and complete distributivity in lattice-ordered groups. Math. Z. 101 (1967), 123–130. DOI 10.1007/BF01136029 | MR 0218284
[2] R.  Cignoli, I. M. L.  D’Ottaviano and D.  Mundici: Algebraic Foundations of Many-valued Reasoning. Trends in Logic, Studia Logica Library, Vol.  7. Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
[3] P.  Conrad: The relationship between the radical of a lattice ordered group and complete distributivity. Pacific J.  Math. 14 (1964), 494–499. DOI 10.2140/pjm.1964.14.493 | MR 0166279 | Zbl 0122.03701
[4] P.  Conrad: Lattice Ordered Groups. Tulane University, 1970. Zbl 0258.06011
[5] L.  Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. MR 0171864 | Zbl 0137.02001
[6] J.  Jakubík: Higher degrees of distributivity in lattices and lattice ordered groups. Czechoslovak Math.  J. 18 (1968), 356–376. MR 0225690
[7] J.  Jakubík: Distributivity in lattice ordered groups. Czechoslovak Math.  J. 22 (1972), 108–125. MR 0325487
[8] J.  Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math.  J. 44 (1994), 725–739.
[9] J.  Jakubík: On complete $MV$-algebras. Czechoslovak Math.  J. 45 (1995), 473–480. MR 1344513
[10] J.  Jakubík: On archimedean $MV$-algebras. Czechoslovak Math.  J. 48 (1998), 575–582. DOI 10.1023/A:1022436113418 | MR 1637871
[11] J.  Jakubík: Complete generators and maximal completions of $MV$-algebras. Czechoslovak Math.  J. 48 (1998), 597–608. DOI 10.1023/A:1022440214327 | MR 1637863
[12] J. T.  Lloyd: Complete distributivity in certain infinite permutation groups. Michigan Math.  J. 14 (1967), 393–400. DOI 10.1307/mmj/1028999839 | MR 0219462 | Zbl 0167.30202
[13] R. S.  Pierce: Distributivity in Boolean algebras. Pacific J.  Math. 7 (1957), 983–992. DOI 10.2140/pjm.1957.7.983 | MR 0089180 | Zbl 0086.02803
[14] R.  Sikorski: Boolean Algebras, Second Edition. Springer Verlag, Berlin, 1964. MR 0126393
[15] F.  Šik: Über subdirekte Summen geordneter Gruppen. Czechoslovak Math.  J. 10 (1960), 400–424. MR 0123626
[16] E. C.  Weinberg: Higher degrees of distributivity in lattices of continuous functions. Trans. Amer. Math. Soc. 104 (1962), 334–346. DOI 10.1090/S0002-9947-1962-0138569-8 | MR 0138569 | Zbl 0105.09401
[17] E. C.  Weinberg: Completely distributive lattice ordered groups. Pacific J.  Math. 12 (1962), 1131–1148. DOI 10.2140/pjm.1962.12.1131 | MR 0147549 | Zbl 0111.24301
Partner of
EuDML logo