Article
Keywords:
commutativity theorems; Jacobson radicals; nilpotent elements; periodic rings; torsion-free rings
Summary:
Suppose that $R$ is an associative ring with identity $1$, $J(R)$ the Jacobson radical of $R$, and $N(R)$ the set of nilpotent elements of $R$. Let $m \ge 1$ be a fixed positive integer and $R$ an $m$-torsion-free ring with identity $1$. The main result of the present paper asserts that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m] = 0$ for all $x,y \in R \setminus J(R)$ and (ii) $[(xy)^m + y^mx^m, x] = 0 = [(yx)^m + x^my^m, x]$, for all $x,y \in R \setminus J(R)$. This result is also valid if (i) and (ii) are replaced by (i)$^{\prime }$ $[x^m,y^m] = 0$ for all $x,y \in R \setminus N(R)$ and (ii)$^{\prime }$ $[(xy)^m + y^m x^m, x] = 0 = [(yx)^m + x^m y^m, x]$ for all $x,y \in R\backslash N(R) $. Other similar commutativity theorems are also discussed.
References:
[1] H. A. S. Abujabal, H. E. Bell, M. S. Khan and M. A. Khan:
Commutativity of semiprime rings with power constraints. Studia Sci. Math. Hungar. 30 (1995), 183–187.
MR 1353595
[3] H. Abu-Khuzam and A. Yaqub:
Commutativity of rings satisfying some polynomial constraints. Acta Math. Hungar. 67 (1995), 207–217.
DOI 10.1007/BF01874332 |
MR 1315805
[4] H. Abu-Khuzam, H. E. Bell and A. Yaqub:
Commutativity of rings satisfying certain polynomial identities. Bull. Austral. Math. Soc. 44 (1991), 63–69.
DOI 10.1017/S0004972700029464 |
MR 1120394
[7] H. E. Bell:
On rings with commutativity powers. Math. Japon. 24 (1979), 473–478.
MR 0557482
[10] Y. Hirano, M. Hongon and H. Tominaga:
Commutativity theorems for certain rings. Math. J. Okayama Univ. 22 (1980), 65–72.
MR 0573674
[11] M. Hongan and H. Tominaga:
Some commutativity theorems for semiprime rings. Hokkaido Math. J. 10 (1981), 271–277.
MR 0662304
[12] N. Jacobson: Structure of Rings. Amer. Math. Soc. Colloq. Publ., Providence, 1964.
[13] T. P. Kezlan:
A note on commutativity of semiprime PI-rings. Math. Japon 27 (1982), 267–268.
MR 0655230 |
Zbl 0481.16013