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Abstract. Suppose that R is an associative ring with identity 1, J(R) the Jacobson radical
of R, and N(R) the set of nilpotent elements of R. Let m > 1 be a fixed positive integer
and R an m-torsion-free ring with identity 1. The main result of the present paper asserts
that R is commutative if R satisfies both the conditions

(i) [z™,y™] =0 for all z,y € R\ J(R) and

(i) ()™ +y™a™ 2] = 0 = [(ya)™ +2™y™, al, for all 2,y € R\ J(R).
This result is also valid if (i) and (ii) are replaced by (i)’ [z, y™] = 0 for all z,y € R\ N(R)
and (i)’ [(zy)™ +y™"z™,x] = 0 = [(yx)™ + 2™y™, z] for all z,y € R\ N(R).

Other similar commutativity theorems are also discussed.

Keywords: commutativity theorems, Jacobson radicals, nilpotent elements, periodic
rings, torsion-free rings

MSC 2000: 16U80, 16U99

1. INTRODUCTION

Throughout, R will denote an associative ring, Z(R) the centre of R, U(R) the
unit of R, J(R) the Jacobson radical of R, N(R) the set of nilpotent elements of R
and C(R) the commutator ideal of R. The symbol [z,y] = zy — yx stands for the
commutator in R where x,y € R. Let m > 1 be a fixed positive integer and B a
non-empty subset of R. For all z,y € B we consider the following ring properties.

Ca(m, B)  (zy)™ =a™y™.
Cs3(m,B) (xy)™ —z™y™ € Z(R).
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Ca(m,B) (zy)" =y"z™

Cs(m,B)  (xy)" —y™a™ € Z(R).

Cs(m, B)  [(xy)™ +y a™,a] =0 = [(yx)™ +z™y™, z].
C7(m,B) (yx)™z™ —x (xy)m € Z(R).

Q(m) For all z,y € R, m[z,y] =0 implies that [z,y] = 0.

A well-known theorem of Herstein [8] asserts that a ring R which possesses the
property Ca(m, R) must have a nil commutator ideal. In a recent paper [1], the
author jointly with Abujabal, Bell and Khan proved that R is commutative if R sat-
isfies C5(m, R). In their paper [4], Abu-Khuzam et al. established commutativity
of the m-torsion-free ring R with identity 1 satisfying C(m, R) and Cs(m + 1, R).
Motivated by these observations, it is natural to ask a question: What can we say
about the commutativity of R if the property Cs3(m + 1, R) in the above result is
replaced by Cs(m + 1, R)?

The object of the present paper, in Section 2, is to establish that an m-torsion-
free ring R with identity 1 satisfying Cq(m, R\ J(R)) and Cs(m, R\ J(R)) must be
commutative. Further, it is shown that this result is also true for the case when the
properties C1(m, R\ J(R)) and Cgs(m, R\ J(R)) are replaced by Cy(m, R\ N(R))
and Cg(m, R\ N(R)). In Section 3, commutativity of rings possessing one of the
properties C7z(m, R\ J(R)) and C7(m,R \ N(R)) has been studied. At the end
of the sections counterexamples are given which show that the hypotheses are not
altogether superfluous. Our theorems generalise the results obtained in [1], [3], [4],

[6], [7], [10], [14].

2. COMMUTATIVITY THEOREMS FOR RINGS WITH 1

We begin with

Lemma 2.1 [12, p. 221]. If[z,y] commutes with x, then [x",y] = nz" [z, y| for
all positive integers n > 1.

Lemma 2.2 [13, Theorem 1]. Let f be a polynomial in n non-commuting inde-
terminates x1, T2, T3, ..., T, with integer coeflicients. Then the following statements
are equivalent:

(i) For any ring R satisfying the polynomial identity f = 0, C(R) is nil.
(ii) For every prime p, (G(F(p))2 fails to satisfy f = 0.
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Lemma 2.3 [9, Theorem|. Let R be a ring in which for given x,y € R there
exist integers m = m(x,y) > 1, n = n(x,y) > 1 such that [x™,y"] = 0. Then the
commutator ideal of R is nil.

Lemma 2.4 [7, Lemma 4]. Let R be an m-torsion-free ring with unity 1 satisfying
Cy(m, R). Then

(i) a € N(R), = € R imply [a,z™] = 0;
(ii) a € N(R), b€ N(R) imply [a,b] = 0.

Lemma 2.5 [14, Lemmal. Let R be a ring with unity 1. If da™[x,y] = 0 and
d(z + 1)™[z,y] = 0 for some integers m > 1 and d > 1, then d[x,y] = 0 for all
z,y € R.

Lemma 2.6 [11, Theorem 1]. Let R be a ring without non-zero nil right ideal.
Suppose that, given x,y € R, there exist positive integers s = s(x,y) > 1, m =
m(x,y) > 1 and t = t(x,y) > 1 such that [x*,[z',y™]] = 0. Then R is commutative.

Now we prove the following results which are called steps.
Step 2.1. Let R be a ring with identity 1 satisfying C1(m,R), C7(m, R) and
Q(m). Then R is commutative.

Proof. First, we claim that [a,2™] = 0 for all z € R and a € N(R). Since a
is nilpotent, there exists a minimal positive integer ¢ such that [a*,2™] = 0 for all
integers k > t. Let m = 2. Then

0=[1+a""H™ 2™ =1 +ma' +...+a®I™ 2™ = m[a*L, 2™

t—1

By the property Q(m), this gives [a*~"',2™] = 0, which contradicts the minimality

of m. Hence ¢t = 1, and [a, 2™] = 0.

In view of [10, Lemma 10], there exists a positive integer s such that s[z™,y] = 0.
Since C(R) C N(R) by virtue of [9, Theorem], it follows from the above that
[™, [z™, y]] = 0. Thus by Lemma 2.1 we have

[,y = sa™ V™, y] = 0.

Further, let ¢, d be arbitrary elements of R. Then replacing = by ¢ and y by ¢™*~1d
in C5(m, R), and combining it with the above result, we get

[(Cm871d0>mcm _ Cm(cms)dm,c] =0
or
[(cms_1+ms(m—1)dmc)cm _ Cm(Cm2Sdm)’ C] =0,
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that is
[(cmzsfldmc)cm - cm(cmzsdm),c] =0.

After a simplification, this gives

Cmsfl[

¢, ¢, d™m]] = 0.

)

Now, using the commutator identity [zy, z] = [y, z] + [z, 2]y for all z,y,z € R and
C(m, R), we have

cm25_1[c, e, d™]] =0
or
cm2571+m [C, [C, dm]] =0.

Therefore, by Lemma 2.5, [¢, [¢,d™]] = 0, and then by Lemma 2.1 we obtain 0 =
[¢™, d™] = mc™ [c,d™]. Again by Lemma 2.5, m|c,d™] = 0. Using the property
Q(m), we conclude that [c,d™] = 0. Hence commutativity of R follows by [9, Theo-
rem). d

Step 2.2. Let R be a ring. Suppose that N(R) is commutative and assume that
a’? =0 and r € R imply that ra € N(R). Then N(R) is an ideal.

Proof. Let a € N(R). Since N(R) is commutative, (N(R),+) is a subgroup
of R. By induction on n we show that

if " =0 and r € R, then (ra)" = (ar)" = 0.

Let a®> = 0. Then ra € N(R) and in view of the hypothesis we have ara = ra? = 0
and hence
(ar)? = (ra)* = 0.

Suppose that b' = 0, t < n implies that (rb)! = (br)! = 0 for all r € R, and
let a® = 0, n > 3. Hence a?,...,a" ! all have powers lower than the n-th
power equal to zero, thus ra?,...,ra" 1, a%r,a®r,...,a" 'r € N(R) for all r € R.
We have (ara)" ! = a(ra®)" %ra = ra®(ra®)" 3ra = r?a®(ra®>)"4ra = ... =
r"=2a?"3rq = r?""2¢?"2r = 0, because 2n — 2 > n. Hence (ara)""! = 0, so
rara € N(R) by virtue of the induction hypothesis. Hence, ra € N(R). Since N(R)
is commutative, clearly

(ra)™ = (ar)® = 0.
This implies that ar = ra € N(R), that is N(R) is an ideal. O
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Step 2.3. Let R be a ring with identity 1, and let m > 1 be a fixed positive
integer. If R satisfies C1(m, R), Cs(m, R) and Q(m), then R is commutative.

Proof. By hypothesis, we have [(xy)™+y™a™,z] = 0 and [(yz)™ +z™y™, x] =
0 for all z,y € R. The first property can be written as

(2.1) o{(zy)™ — (yo)™} = y™2™ ! — 2y™a™ for all z,y € R,
while the latter gives
(2.2) {(zy)™ — (y2)"}x = 2™y™2z — 2™ Ty™ for all z,y € R.

Multiplying (2.1) by « on the right and (2.2) by « on the left, and then subtracting
we get

(2.3) [z,[z™T!,y™]] = 0 for all 2,y € R.

But [2™Tt y™] = a™[z,y™] + [¢™,y™]z in view of the property Ci(m,R) and
(2.3) yields that ™[z, [x,y™]] = 0. Now, replace z by 1 + x and use Lemma 2.5 to
get

(2.4) [z, [z,y™]] =0 for all =,y € R.

From the hypothesis Cy(m, R) and by Lemma 2.3 the commutator ideal is nil. It
follows that N(R) forms an ideal. In view of Lemma 2.4 (i), N(R) is a commutative
ideal. This implies that (N(R))?> C Z(R). Next, for any a € N(R), replace y by
1+ ain (2.4) and use Q(m) to get

(2.5) [, [z,a]] =0 for all z € R and a € N(R).
From Lemma 2.4 (i) we have
(2.6) [a,2™] =0 for all z € R and a € N(R).
Using (2.5) and Lemma 2.1 together with (2.6), we get

maz™ a,z] = 0.

Replacing z by x4+ 1 and using Lemma 2.5 together with Q(m), we get [a,z] = 0 for
all z € R and a € N(R). But then C(R) C N(R), and thus

(2.7) C(R) C N(R) C Z(R).

Next, Lemma 2.1 and Cy(m, R) yield that maz™ t[z,y™] = [z™,y™] = 0 for all
z,y € R. Again using Lemma 2.5 and Q(m), we get [x,y™] = 0 for all z,y € R.
Similarly, we have my™ [x,y] = [z,y™] = 0 and also [z,y] = 0 for all 2,y € R.
Hence R is commutative. ]
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Step 2.4. Suppose that R is a semisimple ring in which for every x,y € R there
exists an integer m = m(xz,y) > 1 such that [(zy)™ + y™a™,z] = 0 = [(yz)™ +

x™y™ x|. Then R is commutative.

Proof. First observe that the hypothesis is inherited by all subrings and all
homomorphic images of R. Note also that no complete matrix ring D; over a division
ring D (t > 1) satisfies our hypothesis if we take x = ea2,y = €22+ ¢€21. By these facts
and the structure theory of rings we can assume that R is a division ring. The proof
of (2.3) is still true in the present situation, so [z, [x™T1 y™]] = 0 for all 2,y € R
and for some m = m(x,y) > 1. By Lemma 2.6 we get the required result. O

Step 2.5. Suppose that R is a semisimple ring in which for every x,y € R there
exists an integer m = m(x,y) > 1 such that (yz)"z™ — 2™ (xy)™ € Z(R). Then R

is commutative.

Proof. Keeping the proof of Step 2.4 in mind, we assume that R is a di-
vision ring. Let z,y be non-zero elements in R. Then there exists an integer
m = m(z,z"'y) > 1 such that (z7'yz)™2™ — 2™ (zz~'y)™ € Z(R). This im-
plies that [z, [z™ !, y™]] = 0. By Lemma 2.6, this gives the required result. O

Theorem 2.1. Let m > 1 be a fixed positive integer, and let R be a ring with
identity 1, satisfying QQ(m). Suppose, further, that R satisfies C1(m, R\ J(R)) and
Cs(m, R\ J(R)). Then R is commutative.

Proof. Suppose that u,v are units in R. Since the proof of (2.4) in Step 2.3
holds, we get

(2.8) [u, [u,v™]] =0 for all u,v € u(R).

By the property Ci(m,R \ J(R)), we find [u™,v™] = 0. In view of (2.8) and
Lemma 2.1, we obtain mu™~'[u,v™] = 0. This implies that

(2.9) [u,v™] =0 for all u,v € U(R).
Let a € N(R). Then there exists a minimal positive integer ! such that
(2.10) [u,a”] =0 for all n>1 and u € U(R).

Let [ > 1. Then 1+ a!~! € U(R), and (2.9) yields that [u, (1 + a'~1)™] = 0. Next,
by (2.10), one gets m[u,a'~'] = 0, and by the property Q(m), we get [u,a'~!] = 0,
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which contradicts the minimality of [ in (2.10); thus [ = 1. Therefore, in view
of (2.10), we get

(2.11) [u,a] =0 for all w € U(R) and a € N(R).
Let j1,j2 € J(R). Then, by (2.9), we have
(2.12) [1+j1,(1442)™] =0 for all jy,j» € J(R).

By Step 2.4, a semisimple ring satisfying Cg(m, R) is commutative and hence by
our assumption R/J(R) is commutative, so C(R) C J(R). Further, we claim that
C(R) € N(R). Choose arbitrary elements x1,y1,Z2,y2,23,y3 of R, and let ¢; =
[z1,91], c2 = [x2,y2] and ¢35 = [z3,ys3] be any commutators. In view of (2.12),
c1,¢2,cg are all in J(R), so (1 + ¢1 + c2 + c1¢2) and (1 + ¢3) are in U(R) and hence
are not in J(R). By hypothesis, we can write

(2.13) [1+c3, (1+c1+ca+crca)™] =0.

Observe that (2.13) is a polynomial identity which is satisfied by all elements of R.
But (2.13) is not satisfied by any 2 x 2 matrix ring over GF(p) with a prime p, if
we take ¢; = [e11,e11 + e12], ca = [e11 + €12, e21] and ¢3 = ¢;. Hence by Lemma 2.2,
C(R) C N(R) and by (2.11) we obtain

(2.14) [1+ jo, [L+ j1, 1+ jo]] = 0 for all j1, 2 € J(R).

By virtue of (2.12) and (2.14), Lemma 2.1 gives that m(1+ j2)™ [1+ 41,1+ ja] = 0.
This implies that m[j1,j2] = 0. By the property Q(m) one gets [j1,j2] = 0 for all
41,J2 € J(R). This implies that J(R) is commutative and (J(R))? C Z(R).

Let m = 1. We have [z,y] = [1 + z,y] = [v,1 4+ y] = [1 + 2,1 + y]. Here, our
hypothesis [«™,y™] = 0 implies that [z,y] = 0 for all z,y € R, since z € J(R)
implies that 1 + = ¢ J(R). This gives the required result.

Let m > 1. In this case it suffices to show that [z",y"] = 0 and [(zy)" +y"z", x] =
0 = [(yz)™ + «™y", x| for all n > 2, where z € J(R) or y € J(R). Combining these
facts together with the properties Ci(m, R\ J(R)) and Cs(m, R\ J(R)), we observe
that R satisfies C1(m, R) and Cg(m, R). By Step 2.3, R is commutative. O
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Theorem 2.2. Let m > 1 be a fixed positive integer, and let R be a ring with
identity 1 satisfying Q(m). Suppose, further, that R satisfies C1(m, R\ N(R)) and
Cs(m, R\ N(R)). Then R is commutative.

Proof. Keeping the proof of Theorem 2.1 in mind, it is enough to show that
N(R) is an ideal of R and hence it is contained in J(R). Note that the arguments used
in the proof of (2.11) are still valid in the present situation, and hence the set N(R)
is commutative. Now let a®> = 0, and for r € R let us assume that ra ¢ N(R).
Replacing z by ra and y by 1 + a in Ce(m, R\ N(R)) we get

[(ra(l+a))™ + (1 +a)™(ra)™,ra] = 0.
This implies that
[(ra)™ + (1 4+ a)™(ra)™,ra] = a(ra)™ " = 0.

That is,
(ra)™ % = 0.
Since a? = 0 and r € R imply ra € N(R) and in view of Step 2.2, one gets the

required result. O

Theorem 2.3. Let m > 1 be a fixed positive integer and let R be a ring with
identity 1 satisfying Q(m). Suppose, further, that R satisfies C1(m, R\ J(R)) and
C7(m,R\ J(R)). Then R is commutative.

Proof. Let u,v be units in R. Then by hypothesis C7(m, R\ J(R)), we have
(u™tou)™u™ — u™ (uu" )™ € Z(R)
or
[u, [u™ !, v™]] = 0.

This implies that
[u, [u,v™]] =0 for all u,v € U(R).

Here the arguments used in the proof of (2.9) and (2.11) are still valid, and hence

(2.15) [u,v™] =0 for all u,v € U(R).
Also
(2.16) [u,a] =0 for all w € U(R) and a € N(R).
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Let j1,j2 € J(R). Then in view of (2.15), we get
[1+71,(14+52)"] =0 for all ji,j2 € J(R).

Arguments similar to those used to obtain (2.14) from (2.12) yield that C'(R) C
N(R), and by (2.16) we have

[14j1,14 jo], 1+ j2]] =0 for all jy,j2 € J(R).

Now by Lemma 2.1 we get [j1,j2] = 0 for all j1,j2 € J(R). Hence J(R) is commu-
tative and
(J(R))* C Z(R)

Let m = 1. Then we use arguments similar to those used in the case of Theo-
rem 2.1.

Let m > 1. Clearly, by the induction hypothesis, we have [z",y"] = 0 and
(yz)"(x)" — a™(ay)™ € Z(R) for all n > 2, provided = € J(R) or y € J(R). Hence
by the properties C1(m, R\ J(R)) and C7(m, R\ J(R)) we observe that R satisfies
Cy(m, R) and C7(m, R) for m > 1. Now, by Step 2.1, R is commutative. O

Theorem 2.4. Let m > 1 be a fixed positive integer and let R be a ring with
identity 1 satisfying Q(m). Suppose, further, that R satisfies C1(m, R\ N(R)) and
C7(m, R\ N(R)). Then R is commutative.

Proof. Let R be aring with 1 satisfying Q(m), C1(m, R\ N(R)) and C7(m, R\
N(R)). Then we observe that the proof of (2.16) is still valid in the present situation,
and hence N(R) is commutative. Let a? = 0 and for r € R assume that ra ¢ N(R).
Then by C7(m, R\ N(R)) we have

(1 +a)ra)™(ra)™ — (ra)™(ra(l +a))™ € Z(R).
This implies that
(1 +a)ra)™(ra)™ — (ra)™(ra(l + a))™,ra] = 0.

That is,
(ar)?™t2 = 0.

Hence a? = 0 and r € R imply ra € N(R), and by Step 2.2, N(R) is an ideal and
hence it is contained in J(R). Thus R is commutative by Theorem 2.3. 0

Now, we provide some counterexamples which show that all the hypotheses in our
theorems are individually essential.
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Remark 2.1. The ring of 3 x 3 strictly upper (or lower) triangular matrices
over 7, the ring of integers, shows that the existence of unity 1 in the hypotheses of
Theorems 2.1-2.4 is necessary.

Next we provide an example to show that the property Q(m) in the hypotheses
of Theorems 2.1 and 2.2 is not superfluous even if the properties [2™,y™] = 0 and
[(xy)™ 4+ y™a™, z] = 0 = [(yx)™ + «2™y™, x| hold for all z,y € R.

a B v
Example 2.1. Let R = 0 a ¢ ||la,B,v,0€ GF(3)
0 0 «

Clearly R satisfies [23,y%] = 0 and (zy)® = y323 for all z,y € R. Hence R satisfies
all the hypotheses except Q(m) when m = 3.

Example 2.2. Consider R as in Example 2.1, but with the elements in GF(2).
Obviously, R satisfies [z%,y?] = 0 and (yz)?2? — 22(2y)? € Z(R) for all z,y € R.
This shows that for m = 2 the property @Q(m) cannot be omitted from the hypotheses
of Theorems 2.3 and 2.4.

Remark 2.2. The ring R from Example 2.1 satisfies the identity (zy)? = y?z2.
Clearly R satisfies Cg(2, R) and Q(2). This demonstrates that the property C7(m, R\
J(R)) (Cy(m, R\ N(R)) is essential in the hypotheses of Theorem 2.1 (Theorem 2.2).

Remark 2.3. Clearly the ring R from Example 2.1 satisfies (yz)*z* — 2 (zy)?* €
Z(R) and Q(4). Hence R satisfies all the hypotheses of Theorem 2.3 (Theorem 2.4)
except C1(4,R\ J(R)) (C1(4,R\ N(R)).

Remark 2.4. The following example demonstrates that a ring R with identity 1
satisfying C1(m, R) and Q(m) need not be commutative.
g
a? 0 ||a, 8,7 € GF(4)
!

@
Example 2.3. Let R = 0
0 0

Clearly the non-commutative ring R satisfies C1(3, R) and @Q(3). This shows the
necessity of the property Cs(m, R\ J(R)) (C7(m, R\ J(R)) in Theorem 2.1 (Theo-
rem 2.3).
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3. A COMMUTATIVITY THEOREM FOR PERIODIC RINGS

In what follows, a ring R is called periodic if for each = € R there exist distinct
positive integers p, ¢ such that 2? = z9. Recently Abu-Khuzam and Yaqub [3, The-
orem 3] proved that a periodic ring R is commutative if R satisfies C5(m, R\ N(R)).
Also they established that if N(R) is commutative in a periodic ring R and R is an
m(m + 1)-torsion-free ring satisfying Cs(m, R\ N(R)), then R is commutative. It is
natural to ask a question: Is the above result valid if the property Cs(m, R\ N(R)) is
replaced by C7(m, R\ N(R))? Now we provide an affirmative answer to this question:

Theorem 3.1. Let m > 1 be a fixed positive integer and let R be a periodic
ring satisfying Q(m(m + 1)) and C7(m, R\ N(R)). Suppose, further, that N(R) is
commutative. Then R is commutative.

Lemma 3.1 [2]. Let R be a periodic ring such that N(R) is commutative. If
for each a € N(R) and x € R there exists an integer m = m(z,a) > 1 such that
[#™[x™,a]] = 0 and [z, [x™HL a]] = 0, then R is commutative. In particular:
if R is a periodic ring such that N(R) is commutative and [z, [z,a]] = 0 for all
a € N(R), x € R, then R is commutative.

Lemma 3.2 [5]. Let R be a periodic ring such that N(R) is commutative. Then
the commutator ideal of R is nil, and N(R) forms an ideal.

Lemma 3.3 [6]. Let R be a periodic ring and let f: R — S be a homomorphism
of R onto S. Then the nilpotents of S coincide with f(N(R)), where N(R) is the
set of nilpotents of R.

Proof of Theorem 3.1. Since R is periodic and N(R) is commutative,
Lemma 3.2 yields that the commutator ideal C'(R) of R is nil; that is C(R) C N(R)
and N(R) forms an ideal of R. But N(R) is commutative, and also (N(R))? C Z(R).

We break the proof into two cases.

Case 1. Let R have identity 1 (1 € R). Suppose that a € N(R) and b € R\ N(R).
Then by hypothesis C7(m, R\ N(R)), we can write

(3.1) b™(1+a)™ —(14a)" " (1+a)"" € Z(R) for all a € N(R), bec R\N(R).
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This implies that

{14+ a)™ -1+ a)m+1bm(1 + a)_l}(l +a)
=1+a){b"(1+a)" — (1+a)"™Mo™(1 +a)"'}

or

(14 a)™ ™ — (1 +a)™ ™™ = (14 a){d™(1 +a)™ — (1 4+a)"™ 0™ (1 +a)"'}.
Using the binomial expansion and the condition (N(R))? C Z(R), one gets
(32)  (m+1)(b"a—ab™) = (1+a){b"(1+a)™ — (1 +a)" ™1 +a)" '}

But N(R) is a commutative ideal, (1 + a)(b™a —ab™) = b™a — ab™, and by (3.2) we
have

(1+a)(m+1)(0™a—ab™) = 1+ a){®)™1+a)™ — (1 +a)" ™1 +a) '}

Since a € N(R), 1 +a € U(R) and by (3.1) this gives that
(m+1)(0™a —ab™) = {b"(14+a)™ — (1 +a)™To™(1 +a)"'} € Z(R).
This implies that (m + 1)[b™,a] € Z(R). Using the property Q(m(m + 1)) we get
(3.3) [b™,a] € Z(R) for all a € N(R), be R\ N(R).
Now since N(R) is commutative, (3.3) implies that
(3.4) [b™,a] € Z(R) for all a € N(R), b€ R.
Next, let z1,29,...,2, € R. Then R\ C(R) is commutative; so, by Lemma 3.2,
(x1...2p)" — 2" ...zt € C(R) C N(R).

Therefore N(R) is commutative, which yields that
(3.5) [(1...2,)™,a] = [z*... 2] for all a € N(R).
Combining (3.4) and (3.5), we get

(3.6) [7*...2" a) € Z(R) for all a € N(R), x1...2, € R and n > 1.
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Let S be the subring generated by the m-th powers of the elements of R. Then
by (3.6) we have

(3.7) [x,a] € Z(S) for all a € N(S), z €S,

where Z(S) and N(S) represent the centre of S and the set of nilpotent elements
of S, respectively. Combining the facts that S is periodic, N(S) is commutative,
and (3.7), Lemma 3.1 shows that S is commutative, and hence [z™,y™] = 0 for all
x,y € R. This implies that R satisfies C1(m, R). But R also satisfies Q(m) and
C7(m, R\ N(R)), and by Theorem 2.4 one gets the required result.

Case 2. Let R have no identity 1; 1 ¢ R. First we prove two facts.

Fact 1. The idempotents of R are central. Let ¢2 = e € R and r € R. Replacing
x by e and y by e + er — ere in the hypothesis C7(m, Z(R)), we get

((e+er —ere)e)™e™ —e™(e(e+er —ere))™ € Z(R).
This implies that ere — er € Z(R). Thus
ere —er = e(ere —er) = (ere — er)e = 0,
or
ere = er.
Similarly, if x = e and y = e 4 re — ere, we obtain
ere = re.

Thus er = re for all » € R and the result follows immediately.

Fact 2. Let f: R — S be a homomorphism of R onto S. Then the nilpotents
of S coincide with f(N(R)), where N(R) is the set of nilpotents of R. This has been
stated in Lemma 3.2.

To complete the proof of Theorem 3.1, first note that R is isomorphic to a subdirect
sum of subdirectly irreducible rings R; (i € T'). Let f;: R — R; be the natural
homomorphism of R onto R;, and let a; € R; and f;(z) = z;, * € R. Since R is
periodic, P = z9 for some integers p > g > 0, and hence

e = z(P=99 ig an idempotent.

By Fact 1, e is central in R and hence f;(e) is central idempotent of R;. Since R; is
subdirectly irreducible, so f;(e) =0 or f;(e) = 1; provided 1, € R;.
Next, two claims arise for R;.
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Claim I. Let R; have no identity; 1; ¢ R;. Then f;(e) = 0 and by (3.7) we have
xgp_q)q = 0. Hence R; is nil and by Fact 2, R; = f;(N(R)). Since by hypothesis
N(R) is commutative, R; is commutative as well.

Claim II. Let R; have identity 1,. Note that R; need not be Q(m(m + 1))-
torsion-free. Let f;(e1) = e1, e1 € R, where R is periodic, so we choose integers
(r—a)q

p > q > 0 such that ¢ = e?. Suppose that e . Then e is an idempotent

and, moreover,
file) =179 — 1,

Thus e is central by Fact 1, and hence e is a non-zero central idempotent of R. Hence
eR is a ring with identity e. Obviously, eR inherits all the hypotheses of the ground
ring R including the property Q(m(m + 1)). It follows by the first part of the proof
that eR is commutative, and hence [ex, ey] = 0 for all x,y € R. Since f;(e) = 1;, this
implies that [f;(xz), fi(y)] =0 for all x,y € R, and then R; = f;(R) is commutative.
Hence the ground ring R is also commutative.

Finally, we provide some counterexamples to show that no hypotheses in Theo-

rem 3.1 are superfluous.

Remark 3.1. The following example demonstrates that one cannot drop the
hypothesis that N(R) is commutative in Theorem 3.1.

a B v
Example 3.1. Let R = 0 a ¢ ||la,B,v,0€ GF(3)
0 0 «

Clearly R satisfies all the hypotheses of Theorem 3.1 except the condition that
N(R) is commutative when m = 4.

Remark 3.2. The following example strengthens the necessity of the property
C7(m, R\ N(R)) in the hypotheses of Theorem 3.1.

a B v
Example 3.2. Let R = 0 a®> 0 ||a,8,7v€ GF(5)
0 0 «

Obviously, the non-commutative ring R satisfies all the hypotheses of Theorem 3.1
except C7(m, R\ N(R)) when m = 2.

Remark 3.3. The following example shows that the hypothesis Q(m(m + 1)) in
Theorem 3.1 is not superfluous.

B

« Y
Example 3.3. Let R = 0 a®> 0 ||a,8,7v€ GF(3)
0 0 «
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Clearly the non-commutative ring R satisfies all the hypotheses of Theorem 3.1
except Q(m(m + 1)).

Remark 3.4. One can ask: Can the property “Q(m(m + 1))” be replaced by
“Q(m)” or “Q(m + 1)” in Theorem 3.17 Example 3.1 shows the following: For
m = 5, the non-commutative ring R satisfies all the hypotheses of Theorem 3.1 and
the commutators in R are 5-torsion-free; for m = 6, the non-commutative ring R
satisfies all the hypotheses and the commutators are 6-torsion-free. This shows that
the property “Q(m(m + 1))”cannot be replaced by “Q(m)” or “Q(m + 1)”.

Acknowledgement. The author is greatly indebted to the referee for his valuable
suggestions.
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