Previous |  Up |  Next

Article

Keywords:
nonlinear Dirichlet problem; nontrivial solution; duality method; superlinear nonlinearity
Summary:
In this paper we establish the existence of nontrivial solutions to \[\frac{\mathrm d}{{\mathrm d}t}L_{x^{\prime }}(t,x^{\prime }(t))+V_{x} (t,x(t))=0,\quad x(0)=0=x(T),\] with $V_x$ superlinear in $x$.
References:
[1] A.  Capietto, J.  Mawhin and F.  Zanolin: Boundary value problems for forced superlinear second order ordinary differential equations. Nonlinear Partial Differential Equations and Their Applications. College de France Seminar, Vol. XII, Pitman Res. Notes ser., 302, 1994, pp. 55–64. MR 1291842
[2] A.  Castro, J.  Cossio and J. M.  Neuberger: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain  J. Math. 27 (1997), 1041–1053. DOI 10.1216/rmjm/1181071858 | MR 1627654
[3] S. K. Ingram: Continuous dependence on parameters and boundary value problems. Pacific J.  Math. 41 (1972), 395–408. DOI 10.2140/pjm.1972.41.395 | MR 0304741
[4] G.  Klaasen: Dependence of solutions on boundary conditions for second order ordinary differential equations. J.  Differential Equations 7 (1970), 24–33. DOI 10.1016/0022-0396(70)90121-X | MR 0273086 | Zbl 0184.11704
[5] L.  Lassoued: Periodic solutions of a second order superquadratic systems with a change of sign in the potential. J.  Differential Equations 93 (1991), 1–18. DOI 10.1016/0022-0396(91)90020-A | MR 1122304
[6] J.  Mawhin: Problèmes de Dirichlet Variationnels Non Linéares. Les Presses de l’Université de Montréal, 1987. MR 0906453
[7] A.  Nowakowski: A new variational principle and duality for periodic solutions of Hamilton’s equations. J.  Differential Equations 97 (1992), 174–188. DOI 10.1016/0022-0396(92)90089-6 | MR 1161317 | Zbl 0759.34039
[8] P. H.  Rabinowitz: Minimax Methods in Critical Points Theory with Applications to Differential Equations. AMS, Providence, 1986. MR 0845785
[9] D.  O’Regan: Singular Dirichlet boundary value problems. I.  Superlinear and nonresonant case. Nonlinear Anal. 29 (1997), 221–245. DOI 10.1016/S0362-546X(96)00026-0 | MR 1446226
Partner of
EuDML logo