Article
Keywords:
nonlinear Dirichlet problem; nontrivial solution; duality method; superlinear nonlinearity
Summary:
In this paper we establish the existence of nontrivial solutions to \[\frac{\mathrm d}{{\mathrm d}t}L_{x^{\prime }}(t,x^{\prime }(t))+V_{x} (t,x(t))=0,\quad x(0)=0=x(T),\] with $V_x$ superlinear in $x$.
Related articles:
References:
[1] A. Capietto, J. Mawhin and F. Zanolin:
Boundary value problems for forced superlinear second order ordinary differential equations. Nonlinear Partial Differential Equations and Their Applications. College de France Seminar, Vol. XII, Pitman Res. Notes ser., 302, 1994, pp. 55–64.
MR 1291842
[2] A. Castro, J. Cossio and J. M. Neuberger:
A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain J. Math. 27 (1997), 1041–1053.
DOI 10.1216/rmjm/1181071858 |
MR 1627654
[6] J. Mawhin:
Problèmes de Dirichlet Variationnels Non Linéares. Les Presses de l’Université de Montréal, 1987.
MR 0906453
[8] P. H. Rabinowitz:
Minimax Methods in Critical Points Theory with Applications to Differential Equations. AMS, Providence, 1986.
MR 0845785