
Czechoslovak Mathematical Journal

Andrzej Nowakowski; Andrzej Rogowski
Existence of solutions for the Dirichlet problem with superlinear nonlinearities

Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 3, 515–528

Persistent URL: http://dml.cz/dmlcz/127819

Terms of use:
© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127819
http://dml.cz


Czechoslovak Mathematical Journal, 53 (128) (2003), 515–528

EXISTENCE OF SOLUTIONS FOR THE DIRICHLET PROBLEM
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Abstract. In this paper we establish the existence of nontrivial solutions to

d
dt

Lx′ (t, x
′(t)) + Vx(t, x(t)) = 0, x(0) = 0 = x(T ),

with Vx superlinear in x.

Keywords: nonlinear Dirichlet problem, nontrivial solution, duality method, superlinear
nonlinearity

MSC 2000 : 34B15, 49J40

1. Introduction

We investigate the nonlinear Dirichlet problem

d
dt

Lx′(t, x′(t)) + Vx(t, x(t)) = 0, a.e. in [0, T ],(1.1)

x(0) = 0 = x(T ),

where

T > 0 is arbitrary, L, V : � × � n → � are convex, Gâteaux(H)

differentiable in the second variable and measurable in t functions.

We are looking for solutions of (1.1) being a pair (x, p) of absolutely continuous
functions x, p : [0, T ] −→ � n , x(0) = 0 = x(T ) such that

d
dt

p(t) + Vx(t, x(t)) = 0,

p(t) = Lx′(t, x′(t)).
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Of course, if L(t, x′) = 1
2 |x′|2 or t → L∗p(t, p(t)) (L∗ denotes the Fenchel conjugate of

L(t, ·)) is an absolutely continuous function, then our solution of (1.1) belongs to the
space C1,+([0, T ], � n) of continuously differentiable functions x whose derivatives x′

are absolutely continuous. In the sequel we assume that Vx is superlinear. It is clear

that (1.1) is the Euler-Lagrange equation for the functional

(1.2) J(x) =
∫ T

0

(−V (t, x(t)) + L(t, x′(t))) dt

considered on the space A0,0 of absolutely continuous functions x : � → � n , x(0) =
0 = x(T ).
The Dirichlet problem (1.1) was studied in the eighties by many authors in the

sublinear case as well as in the superlinear one (see e.g. [6]). However, we believe
that our paper may contribute some new look at this problem. This is because we

propose to study (1.1) by duality methods in a way, to some extend, analogous to
the methods developed for (1.1) in sublinear cases [6], [7]. Some cases of (1.1) for

superlinear Vx were studied in [5], [6], [2], [9]. It is interesting that the method
developed in [5] is based on the dual variational method for the problem, following

the idea developed in [6]. Since the functional (1.2) is, in general, unbounded in
A0,0 (especially in the superlinear case), therefore it is obvious that we must look

for critical points of J of “minmax” type. The main difficulties which appear here
are the following what kind of sets we should choose over which we wish to calculate

“minmax” of J and then to link this value with critical points of J . Of course, we
have the mountain pass theorems, the saddle points theorems, the Morse theory, . . .

(see e.g. [8], [6]) but all these do not exhaust all critical points of J .
Our aim is to find a nonlinear subspace X of A0,0 defined by the type of non-

linearity of V (and in fact also L). To be more precise let us formulate the basic

hypothesis we need:

there exist 0 < α1, α2, α1 6 α2 and d1, d2 ∈ � such that for x′ ∈ L2(H1)

d1 +
α1

2
‖x′‖2

L2 6
∫ T

0

L(t, x′(t)) dt 6 α2

2
‖x′‖2

L2 + d2,(1.3)

L(t, ·) is strictly convex, Vx(t, ·) is continuous, t ∈ [0, T ],

there exist 0 < β1 < β2, q1 > 1, q > 2, k1, k2 ∈ � such that for x ∈ Lq

k1 +
β1

q1
‖x‖q1

Lq1 6
∫ T

0

V (t, x(t)) dt 6 β2

q
‖x‖q

Lq + k2.(1.4)

Having the type of nonlinearities of L and V fixed we are able to define nonlinear

subspaces X, X̃ and X as follows. First, for a given, arbitrary k3 ∈ � we put

X =
{

v ∈ A0,0 :
∫ T

0

V (t, v(t)) dt 6 1
2

∫ T

0

L(t, v′(t)) dt + k3

}
.
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We reduce the space X to the set

X̃ = {v ∈ X : p(t) = Lx′(t, v′(t)), t ∈ [0, T ] belongs to A},

where A is the space of absolutely continuous functions v : [0, T ] → � n with v′ ∈ L2,
and next to the set X ⊂ X̃ with the following property: for each v ∈ X , there exists

(possible another) ṽ ∈ X such that Vx(t, v(t)) = − d
dtLx′(t, ṽ′(t)) for a.e. t ∈ [0, T ].

It is clear that, in general, the set X is much smaller than X̃ and that it depends

strongly on the type of nonlinearities V and L. We easily see that X is not in general
a closed set in A. As the dual set to X we shall consider the set

Xd = {p ∈ AT : there exist v ∈ X and dp ∈ � n

such that p(t) = Lx′(t, v′(t))− dp, t ∈ [0, T ] a.e.},

where AT denotes the space of absolutely continuous functions v : [0, T ] → � n with

v′ ∈ L2 and v(T ) = 0.
The constant dp from the specification of Xd possesses a very interesting property:

Lemma 1.1. For any p ∈ Xd the constant dp from the specification of Xd is a

minimizer of the functional

d −→
∫ T

0

L∗(t, p(t) + d) dt.

���������
. From the definition of Xd we have p(t) + dp = Lx′(t, x′(t)) a.e. in [0, T ]

for some x ∈ X . This means that x′(t) = L∗p(t, p(t) + dp) a.e. in [0, T ]. Integrating
this equality yields, since x(0) = x(T ) = 0 and L∗ is convex, the assertion of the

lemma. �

Taking into account the structure of the set X we shall study the functional

J(x) =
∫ T

0

(−V (t, x(t)) + L(t, x′(t))) dt

on X .
We shall look for a “min” of J over the set X , i.e.

min
x∈X

J(x).

To show that the element x ∈ X realizing “min” is a critical point of J we develop
a duality theory between J and dual to it JD, described in the next section. Just
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by virtue of the duality theory we are able to avoid in our proof of existence of

critical points the deformation lemmas, the Ekeland variational principle or PS type
conditions. One more advantage of our duality results is obtaining for the first time
in the superlinear case a measure of the duality gap between the primal and the dual

functional for approximate solutions to (1.1) (for the sublinear case see [7]).
The main result of our paper is the following:

Theorem (Main). Under hypotheses (H) and (H1) there exists a pair (x, p+ dp),
x ∈ X , p ∈ Xd, dp ∈ � n which is a solution to (1.1) and such that

J(x) = min
x∈X

J(x) = min
p∈Xd

max
d∈ � n

JD(p, d) = JD(p, dp).

We see that our hypotheses on L and V concern only convexity of L(t, ·) or V (t, ·)
and that the latter function is of the superquadratic type. We do not assume that

V (t, x) > 0. However, we require that the above set X is nonempty, which we must
check for each concrete type of equation. Some routine how to do that we show at
the end of the paper for the equation

x′′ + Vx(t, x) = 0.

2. Duality results

To obtain a duality principle we need a kind of perturbation of J . Thus define for
each x ∈ X the perturbation of J as

(2.1) Jx(y) =
∫ T

0

(V (t, x(t) + y(t))− L(t, x′(t))) dt

for y ∈ L2. Of course, Jx(0) = −J(x). For x ∈ X and p ∈ Xd, we define a type of

conjugate of J by

J#
x (p) = sup

y∈L2

{∫ T

0

〈y(t), p′(t)〉 dt−
∫ T

0

V (t, x(t) + y(t)) dt

}
+

∫ T

0

L(t, x′(t)) dt.

By direct calculation we obtain

J#
x (p) = −

∫ T

0

〈x(t), p′(t)〉 dt +
∫ T

0

L(t, x′(t)) dt +
∫ T

0

V ∗(t, p′(t)) dt(2.2)

=
∫ T

0

〈x′(t), p(t) + d〉 dt +
∫ T

0

L(t, x′(t)) dt

+
∫ T

0

V ∗(t, p′(t)) dt for each d ∈ � n .
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Now we take “min” from J#
x (p) with respect to x ∈ X and calculate it. Because

X is not a linear space we need some trick to avoid calculation of the conjugate with
respect to a nonlinear space. To this effect we use the special structure of the set Xd.
First we observe that for each p ∈ Xd and appropriate dp there exists xp ∈ X such

that
p(t) + dp = Lx′(t, x′p(t))

and, by the classical convex analysis argument

x′p(t) = L∗p(t, p(t) + dp),

where L∗ is the Fenchel conjugate to L. Therefore for the above dp we have

∫ T

0

〈
x′p(t), p(t) + dp

〉
dt−

∫ T

0

L(t, x′p(t)) dt =
∫ T

0

L∗(t, p(t) + dp) dt.

Next let us note that, on the other hand,

∫ T

0

〈
x′p(t), p(t) + dp

〉
dt−

∫ T

0

L(t, x′p(t)) dt

6 sup
x∈X

{∫ T

0

〈x′(t), p(t) + dp〉 dt−
∫ T

0

L(t, x′(t)) dt

}

6 sup
x′∈L2

{∫ T

0

〈x′(t), p(t) + dp〉 dt−
∫ T

0

L(t, x′(t)) dt

}

=
∫ T

0

L∗(t, p(t) + dp) dt

and actually all inequalities above are equalities. Therefore we can calculate for
p ∈ Xd and an appropriate dp

sup
x∈X

−J#
x (−p) = sup

x∈X

{∫ T

0

〈x′(t), p(t) + dp〉 dt−
∫ T

0

L(t, x′(t)) dt

}
(2.3)

−
∫ T

0

V ∗(t,−p′(t)) dt

=
∫ T

0

L∗(t, p(t) + dp) dt−
∫ T

0

V ∗(t,−p′(t)) dt.

For p ∈ Xd and each d ∈ � n let us put

JD(p, d) = −
∫ T

0

L∗(t, p(t) + d) dt +
∫ T

0

V ∗(t,−p′(t)) dt.
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From (2.3) we infer for p ∈ Xd that

(2.4) sup
x∈X

−J#
x (−p) = −JD(p, dp).

We can also define a type of the second conjugate of J : for y ∈ L2, x ∈ X , put

J##
x (y) = sup

p∈Xd

{∫ T

0

〈y(t),−p′(t)〉 dt +
∫ T

0

〈x(t),−p′(t)〉 dt

−
∫ T

0

L(t, x′(t)) dt−
∫ T

0

V ∗(t,−p′(t)) dt

}
.

We assert that J##
x (0) = −J(x). To prove that, we use the special structure of X .

First we observe that for each x ∈ X there exists p ∈ Xd such that p′(·) = −Vx(·, x(·))
and therefore

∫ T

0

〈−p′(t), x(t)〉 dt−
∫ T

0

V ∗(t,−p′(t)) dt =
∫ T

0

V (t, x(t)) dt.

Next let us note that
∫ T

0

〈−p′(t), x(t)〉 dt−
∫ T

0

V ∗(t,−p′(t)) dt

6 sup
p∈Xd

{∫ T

0

〈−p′(t), x(t)〉 dt−
∫ T

0

V ∗(t,−p′(t)) dt

}

6 sup
p′∈L2

{∫ T

0

〈−p′(t), x(t)〉 dt−
∫ T

0

V ∗(t,−p′(t)) dt

}

=
∫ T

0

V (t, x(t)) dt.

Hence we see that, for x ∈ X ,

(2.5) J##
x (0) = −

∫ T

0

(−V (t, x(t)) + L(t, x′(t))) dt = −J(x).

We easily compute (see (2.4))

sup
x∈X

J##
x (0) = sup

x∈X
sup

p∈Xd

−J#
x (−p) = sup

p∈Xd

sup
x∈X

−J#
x (−p)(2.6)

= sup
p∈Xd

−JD(p, dp) = sup
p∈Xd

inf
d
−JD(p, d)

where the last equality is a consequence of Lemma 1.1.

Hence, from the above and (2.6) we obtain the following duality principle:
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Theorem 2.1. For functionals J and JD we have the duality relation

(2.7) inf
x∈X

J(x) = inf
p∈Xd

sup
d

JD(p, d).

Denote by ∂Jx(y) the subdifferential of Jx. In particular, if q′ is such that 1/q′ +
1/q = 1 then

∂Jx(0) =
{

p′ ∈ Lq′ :
∫ T

0

V ∗(t, p′(t)) dt +
∫ T

0

V (t, x(t)) dt =
∫ T

0

〈p′(t), x(t)〉 dt

}
.

The next result formulates a variational principle for “minmax” arguments.

Theorem 2.2. Let x ∈ X be such that

+∞ > J(x) = inf
x∈X

J(x) > −∞

and let the set ∂Jx(0) be nonempty. Then there exists −p′ ∈ ∂Jx(0) with p(t) =
−

∫ T

t p′(s) ds belonging to Xd, such that p together with dp satisfies

JD(p, dp) = inf
p∈Xd

sup
d

JD(p, d).

Furthermore,

Jx(0) + J#
x (−p) = 0,(2.8)

JD(p, dp)− J#
x (−p) = 0.(2.9)

���������
. By Theorem 2.1 to prove the first assertion it suffices to show that

J(x) > JD(p, dp). Let us observe that −p′ ∈ ∂Jx(0) means, in fact, that −p′(t) =
Vx(t, x(t)) for a.e. t ∈ [0, T ] and therefore we have

−J(x) =
∫ T

0

(V (t, x(t))− L(t, x′(t))) dt

=
∫ T

0

(−V ∗(t,−p′(t))− L(t, x′(t))) dt +
∫ T

0

〈x(t),−p′(t)〉 dt

6
∫ T

0

(−V ∗(t,−p′(t)) + L∗(t, p(t) + dp)) dt = −JD(p, dp).

Hence J(x) > JD(p, dp) and so J(x) = JD(p, dp) = inf
p∈Xd

sup
d

JD(p, d). The first

assertion will be proved if we show that p ∈ Xd.
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The second assertion is a simple consequence of two facts: Jx(0) = −J(x) so
Jx(0) + J(x) = 0 and −p′ ∈ ∂Jx(0) i.e. Jx(0) + J#

x (−p) = 0.
Then equality (2.9) implies that

∫ T

0

(L∗(t, p(t) + dp)) + L(t, x′(t))) dt =
∫ T

0

〈x′(t), p(t) + dp〉 dt

and so p(t) + dp = Lx′(t, x′(t)). By the definition of p we also have p(T ) = 0 and
therefore p ∈ Xd. �

From equations (2.8), (2.9) we are able to derive a dual to the Euler-Lagrange

equations (1.1).

Corollary 2.1. Let x ∈ X be such that

+∞ > J(x) = inf
x∈X

J(x) > −∞.

Then there exists p ∈ Xd such that the pair (x, p) satisfies the relations

−p′(t) = Vx(t, x(t)),(2.10)

p(t) + dp = Lx′(t, x′(t)),(2.11)

JD(p, dp) = inf
p∈Xd

sup
d

JD(p, d) = inf
x∈X

J(x) = J(x).(2.12)

���������
. By the assumptions on V we see that y →

∫ T

0 V (t, y(t)) dt is finite in Lq,
convex and lower semicontinuous. Therefore Jx(y) is continuous in Lq. Hence ∂Jx(0)
is nonempty and so the existence of p′ in Theorem 2.2 is now obvious. Equations (2.8)
and (2.9) imply

∫ T

0

V (t, x(t)) dt +
∫ T

0

V ∗(t,−p′(t)) dt−
∫ T

0

〈x(t),−p′(t)〉 dt = 0,

∫ T

0

L∗(t, p(t) + dp) dt +
∫ T

0

L(t, x′(t)) dt−
∫ T

0

〈x′(t), p(t) + dp〉 dt = 0,

and then (2.10), (2.11). Relations (2.12) are a direct consequence of Theorem 2.1

and Theorem 2.2. �

As a direct consequence of the above corollary and the definition of Xd we have
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Corollary 2.2. Under the same assumptions as in Corollary 2.1 there exists a
pair (x, p) ∈ X × Xd satisfying together with dp relations (2.12), and the pair (x,
p + dp) is a solution to (1.1). Conversely, each pair (x, p) satisfying, together with
dp, relations (2.12) satisfies also equations (2.10), (2.11).

3. Variational principles and the duality gap

for minimizing sequences

In this section we show that a statement similar to Theorem 2.2 is true for a
minimizing sequence of J .

Theorem 3.1. Let {xj}, xj ∈ X , j = 1, 2, . . ., be a minimizing sequence for J

and let

+∞ > inf
j

J(xj) = a > −∞.

Then there exist −p′j ∈ ∂Jxj (0) with pj ∈ Xd, such that {(pj , dpj )} is a minimizing
sequence for JD, i.e.

inf
x∈X

J(x) = inf
xj∈X

J(xj) = inf
pj∈Xd

sup
d∈ � n

JD(pj , d) = inf
pj∈Xd

JD(pj , dpj ).

Furthermore,

Jxj (0) + J#
xj

(−pj) = 0, JD(pj , dpj )− J#
xj

(−pj) 6 ε, 0 6 J(xj)− JD(pj , dpj ) 6 ε

for a given ε > 0 and sufficiently large j.
���������

. We have ∞ > inf
xj∈X

J(xj) = a > −∞, and therefore for a given ε > 0

there exists j0 such that J(xj)− a < ε for all j > j0. Further, the proof is similar to
that of Theorem 2.2, so we only sketch it. First, as in the proof of Corollary 2.1 we

observe that ∂Jxj (0) is nonempty for j > j0 and take −p′j ∈ ∂Jxj (0). In accordance
with to the definition of Xd let us take as a primitive of p′j such pj that pj(T ) = 0.
Therefore, for all d ∈ � n we also have

−J(xj) =
∫ T

0

(V (t, xj(t)) − L(t, x′j(t))) dt

=
∫ T

0

(−V ∗(t,−p′j(t))− L(t, x′j(t))) dt +
∫ T

0

〈
xj(t),−p′j(t)

〉
dt

6
∫ T

0

(−V ∗(t,−p′j(t)) + L∗(t, pj(t) + d)) dt =

= − JD(pj , d).
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Hence, due to Theorem 2.1,

a + ε > sup
d∈ � n

JD(pj , d) = JD(pj , dpj ) > a for j > j0.

The second assertion is a simple consequence of two facts: Jxj (0) = −J(xj) so
Jxj (0) + J(xj) = 0 and −p′j ∈ ∂Jxj (0) i.e. Jxj (0) + J#

xj
(−pj) = 0. �

The following corollary is a direct consequence of this theorem.

Corollary 3.1. Let {xj}, xj ∈ X , j = 1, 2, . . ., be a minimizing sequence for J

and let

+∞ > inf
j

J(xj) = a > −∞.

If

−p′j(t) = Vx(t, xj(t))

then pj(t) = −
∫ T

t
p′j(s) ds belongs to Xd, and {(pj , dpj )} is a minimizing sequence

for JD, i.e.

inf
x∈X

J(x) = inf
xj∈X

J(xj) = inf
pj∈Xd

sup
d∈ � n

JD(pj , d) = inf
pj∈Xd

JD(pj , dpj ).

Furthermore,

JD(pj , dpj )− J#
xj

(−pj) 6 ε,(3.1)

0 6 J(xj)− JD(pj , dpj ) 6 ε

for a given ε > 0 and sufficiently large j.

4. Existence of a minimum of J

The last problem which we have to solve is to prove the existence of x ∈ X such

that

J(x) = min
x∈X

J(x).

To obtain this it is enough to use hypothesis (H1), the results of the former section

and known compactness theorems.
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Theorem 4.1. Under hypothesis (H1) there exists x ∈ X such that J(x) =
min
x∈X

J(x).
���������

. Let us observe that by (H1), J(x) is bounded below on X . By (1.3),

(1.4) we obtain

J(x) >
∫ T

0

L(t, x′(t)) dt− 1
2

∫ T

0

L(t, x′(t)) dt− k3(4.1)

> α1

4
‖x′‖2 + d1 − k3.

From (4.1) we infer the boundedness below of J on X as well as that the sets
Sb = {x ∈ X : J(x) 6 b}, b ∈ � are nonempty for sufficiently large b and bounded

with respect to the norm ‖x′‖L2 . The last means that Sb, b ∈ � are relatively
weakly compact in A0,0. It is a well known fact that the functional J is weakly lower

semicontinuous in A0,0 and thus also in X . Therefore there exists a sequence {xn},
xn ∈ X , such that xn ⇀ x weakly in A0,0 with x ∈ A0,0 and lim inf

n→∞
J(xn) > J(x).

Moreover, we know that {xn} is uniformly convergent to x. In order to complete the
proof we must only show that x ∈ X .

To prove that we apply the duality results of Section 3. To this effect let us recall
from Corollary 3.1 that for

(4.2) p′n(t) = −Vx(t, xn(t))

pn(t) = −
∫ T

t p′n(s) ds belongs to Xd, and take dpn such that max
d∈ � n

JD(pn, d) =

JD(pn, dpn). Then {(pn, dpn)} is a minimizing sequence for JD. We easily check

that {dpn} is a bounded sequence and therefore we may assume (up to a subse-
quence) that it is convergent. From (4.2) we infer that {p′n} is a bounded sequence
in the L2 norm and that it is pointwise convergent to

p′(t) = −Vx(t, x(t))

and so {pn} is uniformly convergent to p where p(t) = −
∫ T

t p′(s) ds. We can choose
dp satisfying the equality max

d∈ � n
JD(p, d) = JD(p, dp).

By Corollary 3.1 (see (3.1)) we also have (taking into account (4.2)) that for εn → 0
(n →∞)

0 6
∫ T

0

(L∗(t, pn(t) + dpn) + L(t, x′n(t))) dt−
∫ T

0

〈x′n(t), pn(t) + dpn〉 dt 6 εn

and so, passing to the limit we obtain

0 =
∫ T

0

L∗(t, p(t) + dp) dt + lim
n→∞

∫ T

0

L(t, x′n(t)) dt−
∫ T

0

〈x′(t), p(t) + dp〉 dt
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and next, in view of the Fenchel inequality,

0 =
∫ T

0

L∗(t, p(t) + dp) dt +
∫ T

0

L(t, x′(t))) dt−
∫ T

0

〈x′(t), p(t) + dp〉 dt.

Hence x ∈ X. We have also

p(t) + dp = Lx′(t, x′(t)).

Thus x ∈ X and so the proof is completed. �

The following main theorem is a direct consequence of Theorem 4.1 and Corol-
lary 2.1.

Theorem 4.2. Under hypotheses (H) and (H1) there exists a pair (x, p + dp)
which is a solution to (1.1) and such that

J(x) = min
x∈X

J(x) = min
p∈Xd

max
d∈ � n

JD(p, d) = JD(p, dp).

5. Example

Consider the problem

x′′(t) + Wx(t, x(t)) = 0, a.e. in [0, T ],(5.1)

x(0) = 0 = x(T )

where W (·, x) is a measurable function in [0, T ], x ∈ � n , W (t, ·), t ∈ [0, T ], is a
convex, Frechet continuously differentiable function satisfying the following growth
condition:

there exist 0 < β1 < β2, q1 > 1, q > 2, such that for x ∈ � n

β1

q1
|x|q1 6 W (t, x) 6 β2

q
|x|q .

In the notation of the paper we have L(t, x′) = 1
2 |x′|2 and V (t, x) = W (t, x). It is

easily seen that assumptions (H) and (H1) are satisfied. Therefore what we have to

do is to construct a nonempty set X defined in Section 1. To this effect let us take
any k > 0 and let X denote the same as in Section 1 with the new L and V . We
assume the hypothesis

(H1′) T 2β2

( q

q − 1

)q−1

kq−1 6 k.
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Let us observe that hypothesis (H1′) asserts the following: if T or β2 is large then

k must be small and conversely, if we admit k large then T or β2 must be small.

We shall show that the set

X = X̃ = {v ∈ X : 0 < ‖v‖L∞ 6 k, v′ ∈ A}

is a set X which we are looking for. That means: we must prove that for each

function x ∈ X̃ the function

(5.2) w : t →
∫ t

0

∫ s

0

Wx(τ, x(τ)) dτ + at = w0(t) + at

belongs to X̃ for a = − 1
T w0(T ). First note that in view of our assumption on W we

have the estimate

‖Wx(·, x(·))‖L∞ 6 β2

( q

q − 1

)q−1

‖x(·)‖q−1
L∞ .

Therefore

‖w0‖L∞ 6 T 2

2
β2

( q

q − 1

)q−1

‖x(·)‖q−1
L∞ .

Hence, as x ∈ X̃, we have

‖w0‖L∞ 6 T 2

2
β2

( q

q − 1

)q−1

kq−1

and, by (H1′), ‖w‖L∞ 6 ‖w0‖L∞ + |w0(T )| 6 k. Since 0 /∈ X̃ , it is clear that w is
not identically zero. Thus

(5.3) 0 < ‖w‖L∞ 6 k.

It is obvious that if we take k3 sufficiently large then

∫ T

0

W (t, z(t)) dt 6 1
4

∫ T

0

|z′(t)|2 dt + k3

for all z satisfying (5.3).

Therefore w ∈ X̃, and we can put X = X̃. It is also clear that the set X = X̃

is nonempty. Thus all assumptions of Theorem 4.2 are satisfied, so we come to the
following theorem with L = 1/2|x′|2.
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Theorem 5.1. There exists a pair (x, p + dp) which is a solution to (5.1) such
that x 6= 0 and

J(x) = min
x∈X

J(x) = min
p∈Xd

max
d∈ � n

JD(p, d) = JD(p, dp).
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