Article
Keywords:
pseudo $MV$-algebra; convex chain; Archimedean property; direct product decomposition
Summary:
For a pseudo $MV$-algebra $\mathcal A$ we denote by $\ell (\mathcal A)$ the underlying lattice of $\mathcal A$. In the present paper we investigate the algebraic properties of maximal convex chains in $\ell (\mathcal A)$ containing the element 0. We generalize a result of Dvurečenskij and Pulmannová.
References:
[1] R. Cignoli, M. I. D’Ottaviano and D. Mundici:
Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Studia Logica Library, vol. 7. Kluwer Academic Publishers, Dordrecht, 2000.
MR 1786097
[2] P. Conrad:
Lattice Ordered Groups. Tulane University, 1970.
Zbl 0258.06011
[3] A. Dvurečenskij and S. Pulmannová:
New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, and Ister Science, Bratislava, 2000.
MR 1861369
[4] G. Georgescu and A. Iorgulescu:
Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: The Proceedings of the Fourth International Symposyium on Economic Informatics, Bucharest, 1999, pp. 961–968.
MR 1730100
[5] G. Georgescu and A. Iorgulescu:
Pseudo $MV$-algebras. Multiple Valued Logic (a special issue dedicated to Gr. C. Moisil) 6 (2001), 95–135.
MR 1817439
[6] J. Jakubík:
Direct product of $MV$-algebras. Czechoslovak Math. J. 44(119) (1994), 725–739.
MR 1295146
[7] J. Jakubík:
Direct product decompositions of pseudo $MV$-algebras. Arch. Math. 37 (2001), 131–142.
MR 1838410
[8] J. Jakubík:
On chains in $MV$-algebras. Math. Slovaca 51 (2001), 151–166.
MR 1841444