Previous |  Up |  Next

Article

Keywords:
lattice; semimodular lattice; graph automorphism; direct factor
Summary:
In this paper we apply the notion of cell of a lattice for dealing with graph automorphisms of lattices (in connection with a problem proposed by G. Birkhoff).
References:
[1] G.  Birkhoff: Lattice Theory. Third Edition, , Providence, 1967. MR 0227053 | Zbl 0153.02501
[2] D.  Duffus and I.  Rival: Path length in the covering graph of a lattice. Discrete Math. 19 (1979), 139–158. DOI 10.1016/0012-365X(77)90029-2 | MR 0543829
[3] J. Jakubík: On graph isomorphism of lattices. Czechoslovak Math.  J. 4 (1954), 131–142. (Russian) MR 0069139
[4] J. Jakubík: On isomorphisms of graphs of lattices. Czechoslovak Math.  J. 35 (1985), 188–200. MR 0787124
[5] J.  Jakubík: Graph automorphisms of a finite modular lattice. Czechoslovak Math.  J. 49 (1999), 443–447. DOI 10.1023/A:1022425007638 | MR 1692500
[6] J.  Jakubík: Graph automorphisms of semimodular lattices. Math. Bohem. 125 (2000), 459–464. MR 1802294
[7] J.  Jakubík and M.  Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359–379. MR 1251882
[8] M.  Kolibiar: Graph isomorphisms of semilattices. In: Contributions to General Algebra  3, Proc. of the Vienna Conference 1984, Verlag Hölder-Pichler-Tempsky, Wien, 1985, pp. 225–235. MR 0815129 | Zbl 0563.06004
[9] J. G.  Lee: Covering graphs of lattices. Bull. Korean Math. Soc. 23 (1986), 39–46. MR 0843207 | Zbl 0606.06005
[10] C.  Ratanaprasert: Compatible Orderings of Semilattices and Lattices. Ph.D. Thesis, La Trobe University, 1987.
[11] C.  Ratanaprasert: Compatible orders on semilattices. Tatra Mt. Math. Publ. 5 (1995), 177–187. MR 1384807
[12] C.  Ratanaprasert and B. A.  Davey: Semimodular lattices with isomorphic graphs. Order 4 (1987), 1–13. MR 0908432
[13] K.  Reuter: The Kurosh-Ore exchange property. Acta Math. Acad. Sci. Hung. 53 (1989), 119–127. DOI 10.1007/BF02170062 | MR 0987044 | Zbl 0675.06003
[14] M.  Stern: On the covering graph of balanced lattices. Discrete Math. 156 (1996), 311–316. DOI 10.1016/0012-365X(95)00061-Z | MR 1405034 | Zbl 0861.06005
[15] M.  Tomková: Graph isomorphisms of partially ordered sets. Math. Slovaca 37 (1987), 47–52. MR 0899016
[16] R.  Wille: Subdirect decompositions of concept lattices. Algebra Universalis 17 (1983), 275–287. DOI 10.1007/BF01194537 | MR 0729937
Partner of
EuDML logo