[2] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publ., Dordrecht, 2000.
MR 1786097
[4] R. Frič:
A Stone-type duality and its applications to probability. In: Proceedings of the 12th Summer Conference on General Topology and its Applications, North Bay, August 1997, 1999, pp. 125–137.
MR 1718934
[6] H. Herrlich and G. E. Strecker:
Category theory. Second edition. Heldermann Verlag, Berlin, 1976.
MR 2377903
[7] J. Jakubík:
Sequential convergences on $MV$-algebras. Czechoslovak Math. J. 45(120) (1995), 709–726.
MR 1354928
[8] M. Jurečková:
The measure extension theorem on $MV$-algebras. Tatra Mt. Math. Publ. 6 (1995), 55–61.
MR 1363983
[10] E. P. Klement and M. Navara:
A characterization of tribes with respect to the Łukasiewicz $t$-norm. Czechoslovak Math. J. 47(122) (1997), 689–700.
DOI 10.1023/A:1022822719086 |
MR 1479313
[11] F. Kôpka and F. Chovanec:
$D$-posets. Math. Slovaca 44 (1994), 21–34.
MR 1290269
[12] P. Kratochvíl:
Multisequences and measure. In: General Topology and its Relations to Modern Analysis and Algebra, IV (Proc. Fourth Prague Topological Sympos., 1976), Part B Contributed Papers, Society of Czechoslovak Mathematicians and Physicists, Praha, 1977, pp. 237–244.
MR 0460576
[14] J. Novák:
Über die eindeutigen stetigen Erweiterungen stetiger Funktionen. Czechoslovak Math. J. 8(83) (1958), 344–355.
MR 0100826
[15] J. Novák:
On the sequential envelope. In: General Topology and its Relation to Modern Analysis and Algebra (I) (Proc. (First) Prague Topological Sympos., 1961), Publishing House of the Czechoslovak Academy of Sciences, Praha, 1962, pp. 292–294.
MR 0175082
[16] J. Novák:
On convergence spaces and their seqeuntial envelopes. Czechoslovak Math. J. 15(90) (1965), 74–100.
MR 0175083
[17] J. Novák:
On sequential envelopes defined by means of certain classes of functions. Czechoslovak Math. J. 18(93) (1968), 450–456.
MR 0232335
[18] E. Pap:
Null-Additive Set Functions. Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 1995.
MR 1368630 |
Zbl 0968.28010
[20] P. Pták and S. Pulmannová:
Orthomodular Structures as Quantum Logics. Kluwer Acad. Publ., Dordrecht, 1991.
MR 1176314
[21] B. Riečan and T. Neubrunn:
Integral, Measure, and Ordering. Kluwer Acad. Publ., Dordrecht-Boston-London, 1997.
MR 1489521