[1] F. Altomare and M. Campiti:
Korovkin-type Approximation Theory and its Applications. Vol.17, de Gruyter Series Studies in Mathematics, de Gruyter, Berlin-New York, 1994.
MR 1292247
[2] F. Altomare and E. M. Mangino:
On a generalization of Baskakov operators. Rev. Roumaine Math. Pures Appl. 44 (1999), 683–705.
MR 1839672
[4] I. Chlodovsky:
Sur le développement des fonctions définies dans un interval infini en séries de polynômes de M. S. Bernstein. Compositio Math. 4 (1937), 380–393.
MR 1556982
[5] Ph. Clément and C. A. Timmermans:
On $C_0$-semigroups generated by differential operators satisfying Ventcel’s boundary conditions. Indag. Math. 89 (1986), 379–387.
DOI 10.1016/1385-7258(86)90023-5 |
MR 0869754
[7] S. M. Eisenberg:
Korovkin’s theorems. Bull. Malaysian Math. Soc. 2 (1979), 13–29.
MR 0545798
[8] S. Eisenberg and B. Wood:
Approximating unbounded functions by linear operators generated by moment sequences. Studia Math. 35 (1970), 299–304.
DOI 10.4064/sm-35-3-299-304 |
MR 0271585
[9] A. D. Gadzhiev:
The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin. Soviet. Math. Dokl. 15 (1974), 1433–1436.
Zbl 0312.41013
[12] C. A. Timmermans:
On $C_0$-semigroups in a space of bounded continuous functions in the case of entrance or natural boundary points. In: Approximation and Optimization. Lecture Notes in Math. 1354, J. A. Gómez Fernández et al. (eds.), Springer-Verlag, Berlin-New York, 1988, pp. 209–216.
MR 0996675