Article
Keywords:
V-ring; progenerator; almost split morphisms
Summary:
We investigate the category $\text{mod}\Lambda $ of finite length modules over the ring $\Lambda =A\otimes _k\Sigma $, where $\Sigma $ is a V-ring, i.e. a ring for which every simple module is injective, $k$ a subfield of its centre and $A$ an elementary $k$-algebra. Each simple module $E_j$ gives rise to a quasiprogenerator $P_j=A\otimes E_j$. By a result of K. Fuller, $P_j$ induces a category equivalence from which we deduce that $\text{mod}\Lambda \simeq \coprod _jbad hbox P_j$. As a consequence we can (1) construct for each elementary $k$-algebra $A$ over a finite field $k$ a nonartinian noetherian ring $\Lambda $ such that $\text{mod}A\simeq \text{mod}\Lambda $, (2) find twisted versions $\Lambda $ of algebras of wild representation type such that $\Lambda $ itself is of finite or tame representation type (in mod), (3) describe for certain rings $\Lambda $ the minimal almost split morphisms in $\text{mod} \Lambda $ and observe that almost all of these maps are not almost split in $\text{Mod}\Lambda $.
References:
[1] M. Auslander:
A survey of existence theorems for almost split sequences. Representation theory of algebras. Proc. Symp. Durham 1985, London Math. Soc. Lecture Notes Series Vol. 116, Cambridge, 1986, pp. 81–89.
MR 0897320 |
Zbl 0606.16020
[2] M. Auslander, I. Reiten and S. O. Smalø:
Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics Vol. 36. Cambridge, 1995.
MR 1314422
[4] C. Faith:
Algebra: Rings, Modules and Categories I. Springer Grundlehren Vol. 190, Berlin, Heidelberg, New York, 1973.
MR 0366960 |
Zbl 0266.16001
[5] K. R. Fuller:
Density and equivalences. J. Algebra 29 (1974), 528–550.
MR 0374192
[7] Chr. Kassel:
Quantum Groups. Graduate Texts in Mathematics Vol. 155. Springer, Berlin, Heidelberg, New York, 1995.
MR 1321145
[9] C. M. Ringel:
The representation type of local algebras. Proc. Conf. Ottawa 1974, Lect. Notes Math. Vol. 488, 1975, pp. 282–305.
MR 0382356 |
Zbl 0348.16013
[10] R. Wisbauer:
Grundlagen der Modul- und Ringtheorie. Verlag Reinhard Fischer, München, 1988.
MR 0969132 |
Zbl 0657.16001