Previous |  Up |  Next

Article

Keywords:
V-ring; progenerator; almost split morphisms
Summary:
We investigate the category $\text{mod}\Lambda $ of finite length modules over the ring $\Lambda =A\otimes _k\Sigma $, where $\Sigma $ is a V-ring, i.e. a ring for which every simple module is injective, $k$ a subfield of its centre and $A$ an elementary $k$-algebra. Each simple module $E_j$ gives rise to a quasiprogenerator $P_j=A\otimes E_j$. By a result of K. Fuller, $P_j$ induces a category equivalence from which we deduce that $\text{mod}\Lambda \simeq \coprod _jbad hbox P_j$. As a consequence we can (1) construct for each elementary $k$-algebra $A$ over a finite field $k$ a nonartinian noetherian ring $\Lambda $ such that $\text{mod}A\simeq \text{mod}\Lambda $, (2) find twisted versions $\Lambda $ of algebras of wild representation type such that $\Lambda $ itself is of finite or tame representation type (in mod), (3) describe for certain rings $\Lambda $ the minimal almost split morphisms in $\text{mod} \Lambda $ and observe that almost all of these maps are not almost split in $\text{Mod}\Lambda $.
References:
[1] M. Auslander: A survey of existence theorems for almost split sequences. Representation theory of algebras. Proc. Symp. Durham  1985, London Math. Soc. Lecture Notes Series Vol.  116, Cambridge, 1986, pp. 81–89. MR 0897320 | Zbl 0606.16020
[2] M. Auslander, I. Reiten and S. O. Smalø: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics Vol.  36. Cambridge, 1995. MR 1314422
[3] J. H. Cozzens: Homological properties of the ring of differential polynomials. Bull. Amer. Math. Soc. 76 (1970), 75–79. DOI 10.1090/S0002-9904-1970-12370-9 | MR 0258886 | Zbl 0213.04501
[4] C. Faith: Algebra: Rings, Modules and Categories I. Springer Grundlehren Vol. 190, Berlin, Heidelberg, New York, 1973. MR 0366960 | Zbl 0266.16001
[5] K. R. Fuller: Density and equivalences. J. Algebra 29 (1974), 528–550. MR 0374192
[6] K. R. Fuller: $*$-modules over ring extensions. Comm. Algebra 25 (1997), 2839–2860. DOI 10.1080/00927879708826026 | MR 1458733
[7] Chr. Kassel: Quantum Groups. Graduate Texts in Mathematics Vol.  155. Springer, Berlin, Heidelberg, New York, 1995. MR 1321145
[8] B. L. Osofsky: On twisted polynomial rings. J. Algebra 18 (1971), 597–607. MR 0280521 | Zbl 0223.16004
[9] C. M. Ringel: The representation type of local algebras. Proc. Conf. Ottawa  1974, Lect. Notes Math. Vol. 488, 1975, pp. 282–305. MR 0382356 | Zbl 0348.16013
[10] R. Wisbauer: Grundlagen der Modul- und Ringtheorie. Verlag Reinhard Fischer, München, 1988. MR 0969132 | Zbl 0657.16001
[11] W. Zimmermann: Auslander-Reiten sequences over artinian rings. J.  Algebra 119 (1988), 366–92. DOI 10.1016/0021-8693(88)90066-X | MR 0971140 | Zbl 0661.16024
[12] W. Zimmermann: Auslander-Reiten sequences over derivation polynomial rings. J. Pure Appl. Algebra 74 (1991), 317–32. DOI 10.1016/0022-4049(91)90120-Q | MR 1135035 | Zbl 0742.16008
Partner of
EuDML logo