Previous |  Up |  Next

Article

Keywords:
Pettis integrability; HK-integrals; Saks-Henstock’s property
Summary:
We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces.
References:
[1] R. G.  Bartle: Return to the Riemann integral. Amer. Math. Monthly 103 (1996), 625–632. DOI 10.2307/2974874 | MR 1413583 | Zbl 0884.26007
[2] M. M.  Day: Normed Linear Spaces. Academic Press Inc., New York, 1962. MR 0145316 | Zbl 0100.10802
[3] J.  Diestel: Sequences and Series in Banach Spaces. Springer-Verlag, New York, 1984. MR 0737004
[4] J.  Diestel and J. J.  Uhl, Jr.: Vector Measures. Mathematical Surveys, No.  15. Amer. Math. Soc., Providence, 1997. MR 0453964
[5] R. Henstock: The General Theory of Integration. Clarendon Press, Oxford, 1991. MR 1134656 | Zbl 0745.26006
[6] W. F.  Pfeffer: The Riemann Approach to Integration. Cambridge Tracts in Mathematics, No.  109. Cambridge University Press, Cambridge, 1993. MR 1268404
[7] E. M.  Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970. MR 0290095 | Zbl 0207.13501
[8] Š.  Schwabik: Abstract Bochner and McShane Integrals. Ann. Math. Sil. 1564(10) (1996), 21–56. MR 1399609 | Zbl 0868.28005
Partner of
EuDML logo