Article
Keywords:
Pettis integrability; HK-integrals; Saks-Henstock’s property
Summary:
We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces.
References:
[3] J. Diestel:
Sequences and Series in Banach Spaces. Springer-Verlag, New York, 1984.
MR 0737004
[4] J. Diestel and J. J. Uhl, Jr.:
Vector Measures. Mathematical Surveys, No. 15. Amer. Math. Soc., Providence, 1997.
MR 0453964
[6] W. F. Pfeffer:
The Riemann Approach to Integration. Cambridge Tracts in Mathematics, No. 109. Cambridge University Press, Cambridge, 1993.
MR 1268404
[7] E. M. Stein:
Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970.
MR 0290095 |
Zbl 0207.13501
[8] Š. Schwabik:
Abstract Bochner and McShane Integrals. Ann. Math. Sil. 1564(10) (1996), 21–56.
MR 1399609 |
Zbl 0868.28005