Article
Keywords:
heterogeneous algebra; relational structure; homomorphism; decomposable mapping; category of heterogeneous algebras
Summary:
A construction of all homomorphisms of a heterogeneous algebra into an algebra of the same type is presented. A relational structure is assigned to any heterogeneous algebra, and homomorphisms between these relational structures make it possible to construct homomorphisms between heterogeneous algebras. Homomorphisms of relational structures can be constructed using homomorphisms of algebras that are described in [11].
References:
[3] J. A. Goguen, J. W. Thatcher, E. G. Wagner and J. B. Wright:
Initial algebra semantics and continuous algebras. J. Assoc. Comput. Mach. 24 (1977), 68–95.
DOI 10.1145/321992.321997 |
MR 0520711
[5] A. A. Letičevskij: Sintaksis i semantika formal’nych jazykov (Syntax and semantics of formal languages). Kibernetika No 4, 1968, pp. 1–9. (Russian)
[6] S. Mac Lane:
Categories for the Working Mathematician. Springer, New York-Heidelberg-Berlin, 1971.
MR 0354798 |
Zbl 0232.18001
[7] M. Novotný:
Sur un problème de la théorie des applications. Publ. Fac. Sci. Univ. Masaryk Brno No 344 (1953/2), 53–64. (Czech)
MR 0061149
[8] M. Novotný:
Mono-unary algebras in the work of Czechoslovak mathematicians. Arch. Math. (Brno) 26 (1990), 155–164.
MR 1188275
[9] M. Novotný:
On some correspondences between relational structures and algebras. Czechoslovak Math. J. 43 (118) (1993), 643–647.
MR 1258426
[10] M. Novotný:
Construction of all homomorphisms of mono-$n$-ary algebras. Czechoslovak Math. J. 46 (121) (1996), 331–333.
MR 1388621