Article
Keywords:
normal $B$-subalgebra; fuzzy (normal) $B$-algebra; upper level cut
Summary:
The fuzzification of (normal) $B$-subalgebras is considered, and some related properties are investigated. A characterization of a fuzzy $B$-algebra is given.
References:
[1] J. R. Cho and H. S. Kim:
On $B$-algebras and quasigroups. Preprint.
MR 1876781
[2] Q. P. Hu and X. Li:
On $BCH$-algebras. Math. Seminar Notes 11 (1983), 313–320.
MR 0769036
[3] Q. P. Hu and X. Li:
On proper $BCH$-algebras. Math. Japon. 30 (1985), 659–661.
MR 0812016
[4] K. Iséki:
On $BCI$-algebras. Math. Seminar Notes 8 (1980), 125–130.
MR 0590171
[5] K. Iséki and S. Tanaka:
An introduction to theory of $BCK$-algebras. Math. Japon. 23 (1978), 1–26.
MR 0500283
[6] Y. B. Jun, E. H. Roh and H. S. Kim:
On $BH$-algebras. Sci. Math. 1 (1998), 347–354.
MR 1688250
[7] J. Meng and Y. B. Jun:
$BCK$-Algebras. Kyung Moon Sa Co., Seoul, 1994.
MR 1297121
[8] J. Neggers, P. J. Allen and H. S. Kim: $B$-algebras and groups. Submitted.
[10] J. Neggers and H. S. Kim: A fundamental theorem of $B$-homomorphism for $B$-algebras. Submitted.