Previous |  Up |  Next

Article

Keywords:
normal $B$-subalgebra; fuzzy (normal) $B$-algebra; upper level cut
Summary:
The fuzzification of (normal) $B$-subalgebras is considered, and some related properties are investigated. A characterization of a fuzzy $B$-algebra is given.
References:
[1] J. R.  Cho and H. S.  Kim: On $B$-algebras and quasigroups. Preprint. MR 1876781
[2] Q. P.  Hu and X.  Li: On $BCH$-algebras. Math. Seminar Notes 11 (1983), 313–320. MR 0769036
[3] Q. P.  Hu and X.  Li: On proper $BCH$-algebras. Math. Japon. 30 (1985), 659–661. MR 0812016
[4] K. Iséki: On $BCI$-algebras. Math. Seminar Notes 8 (1980), 125–130. MR 0590171
[5] K. Iséki and S. Tanaka: An introduction to theory of $BCK$-algebras. Math. Japon. 23 (1978), 1–26. MR 0500283
[6] Y. B. Jun, E. H.  Roh and H. S.  Kim: On $BH$-algebras. Sci. Math. 1 (1998), 347–354. MR 1688250
[7] J.  Meng and Y. B.  Jun: $BCK$-Algebras. Kyung Moon Sa Co., Seoul, 1994. MR 1297121
[8] J. Neggers, P. J.  Allen and H. S.  Kim: $B$-algebras and groups. Submitted.
[9] J. Neggers and H. S. Kim: On $B$-algebras. Int. J. Math. Math. Sci. 27 (2001), 749–757. DOI 10.1155/S0161171201006627 | MR 1877082
[10] J. Neggers and H. S.  Kim: A fundamental theorem of $B$-homomorphism for $B$-algebras. Submitted.
Partner of
EuDML logo