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Abstract. The fuzzification of (normal) B-subalgebras is considered, and some related
properties are investigated. A characterization of a fuzzy B-algebra is given.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras
and BCI-algebras ([4, 5]). It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. In [2, 3] Q.P. Hu and X. Li introduced
a wide class of abstract algebras: BCH-algebras. They showed that the class of
BCI-algebras is a proper subclass of the class of BCH-algebras. Recently, the
present authors ([6]) have introduced a new notion, called a BH-algebra, which is
a generalization of BCH/BCI/BCK-algebras. They also defined the notions of
ideals and boundedness in BH-algebras, and showed that there is a maximal ideal in
bounded BH-algebras. The third author together with J. Neggers ([9]) introduced
and investigated a class of algebras, viz., the class of B-algebras, which is related to
several classes of algebras of interest such as BCH/BCI/BCK-algebras, and which
seems to have rather nice properties without being excessively complicated otherwise.
J. R. Cho and H. S. Kim ([1]) discussed further relations between B-algebras and
other classes of algebras, such as quasigroups. It is well known that every group
determines a B-algebra, called a group-derived B-algebra. It is natural to consider
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the problem whether or not all B-algebras are so group-derived. It is proved that
this is not the case in general, and thus that this class of algebras contains the
class of groups indirectly via the group-derived principle (see [8]). In this paper we
consider the fuzzification of (normal) B-subalgebras in B-algebras and investigate
some related properties. We give a characterization of a fuzzy B-algebra.

2. Preliminaries

A B-algebra is a non-empty set X with a constant 0 and a binary operation “∗”
satisfying the following axioms:

(I) x ∗ x = 0,

(II) x ∗ 0 = x,

(III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))

for all x, y, z in X . A non-empty subset N of a B-algebra X is called a B-subalgebra
of X if x ∗ y ∈ N for any x, y ∈ N . A non-empty subset N of a B-algebra X is said
to be normal if (x ∗ a) ∗ (y ∗ b) ∈ N whenever x ∗ y ∈ N and a ∗ b ∈ N . Note that any
normal subset N of a B-algebra X is a B-subalgebra of X , but the converse need
not be true (see [10]). A non-empty subset N of a B-algebra X is called a normal
B-subalgebra of X if it is both a B-subalgebra and normal.

Lemma 2.1 ([9]). If X is a B-algebra, then x∗y = x∗(0∗(0∗y)) for all x, y ∈ X .

Example 2.2 ([9]). Let X be the set of all real numbers except for a negative
integer −n. Define a binary operation ∗ on X by

x ∗ y :=
n(x− y)

n+ y
.

Then (X ; ∗, 0) is a B-algebra.

Example 2.3 ([9]). Let Z be the group of integers under usual addition and let
α �∈ Z. We adjoin the special element α to Z. Let X := Z ∪ {α}. Define α+ 0 = α,
α + n = n − 1 where n �= 0 in Z and α + α is an arbitrary element in X . Define
a mapping ϕ : X → X by ϕ(α) = 1, ϕ(n) = −n where n ∈ Z. If we define a
binary operation “∗” on X by x∗y := x+ϕ(y), then (X ; ∗, 0) is a non-group derived
B-algebra.
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3. Fuzzy B-algebras

In what follows, let X denote a B-algebra unless otherwise specified.

Definition 3.1. A fuzzy set µ in X is called a fuzzy B-algebra if it satisfies the
inequality

µ(x ∗ y) � min{µ(x), µ(y)}

for all x, y ∈ X .

Example 3.2. Let X := {0, 1, 2, 3, 4, 5} be a set with the following table:

∗ 0 1 2 3 4 5
0 0 2 1 3 4 5
1 1 0 2 4 5 3
2 2 1 0 5 3 4
3 3 4 5 0 2 1
4 4 5 3 1 0 2
5 5 3 4 2 1 0

Then (X ; ∗, 0) is a B-algebra (see [10, Example 3.5]). Define a fuzzy set µ : X → [0, 1]
by µ(0) = µ(3) = 0.7 > 0.1 = µ(x) for all x ∈ X\{0, 3}. Then µ is a fuzzy B-algebra.

Proposition 3.3. Every fuzzy B-algebra µ satisfies the inequality µ(0) � µ(x)
for all x ∈ X .

�����. Since x ∗ x = 0 for all x ∈ X , we have µ(0) = µ(x ∗ x) �
min{µ(x), µ(x)} = µ(x) for all x ∈ X . �

For any elements x and y of X , let us write
n∏

x∗ y for x∗ (. . .∗ (x∗ (x∗ y))) where
x occurs n times.

Proposition 3.4. Let a fuzzy set µ in X be a fuzzy B-algebra and let n ∈ �.
Then

(i) µ
( n∏

x ∗ x
)

� µ(x) whenever n is odd,

(ii) µ
( n∏

x ∗ x
)
= µ(x) whenever n is even,

for all x ∈ X .

�����. Let x ∈ X and assume that n is odd. Then n = 2k−1 for some positive
integer k. Observe that µ(x ∗ x) = µ(0) � µ(x). Suppose that µ

(2k−1∏
x ∗ x

)
� µ(x)
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for a positive integer k. Then

µ

(2(k+1)−1∏
x ∗ x

)
= µ

(2k+1∏
x ∗ x

)

= µ

(2k−1∏
x ∗ (x ∗ (x ∗ x))

)

= µ

(2k−1∏
x ∗ x

)
[by (I), (II)]

� µ(x),

which proves (i). Similarly we obtain the second part. �

Proposition 3.5. If a fuzzy set µ in X is a fuzzy B-algebra, then
(fB1) µ(0 ∗ x) � µ(x),
(fB2) µ(x ∗ (0 ∗ y)) � min{µ(x), µ(y)} for all x, y ∈ X .

�����. For any x, y ∈ X we have µ(0 ∗ x) � min{µ(0), µ(x)} � µ(x) and

µ(x ∗ (0 ∗ y)) � min{µ(x), µ(0 ∗ y)}
� min{µ(x), µ(y)},

proving the results. �

Since x = 0 ∗ (0 ∗ x) (see [1, Lemma 3.5]), if µ is a fuzzy B-algebra, then µ(x) =
µ(0 ∗ (0 ∗ x)) � min{µ(0), µ(0 ∗ x)} = µ(0 ∗ x), i.e., µ(x) = µ(0 ∗ x) for any x ∈ X .

Theorem 3.6. If a fuzzy set µ in X satisfies (fB1) and (fB2), then µ is a fuzzy
B-algebra.

�����. Assume that a fuzzy set µ in X satisfies the conditions (fB1) and (fB2)
and let x, y ∈ X . Then

µ(x ∗ y) = µ(x ∗ (0 ∗ (0 ∗ y))) [by Lemma 2.1]

� min{µ(x), µ(0 ∗ y)} [by (fB2)]

� min{µ(x), µ(y)}. [by (fB1)]

Hence µ is a fuzzy B-algebra. �
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4. Fuzzy normal B-algebras

Definition 4.1. A fuzzy set µ in X is said to be fuzzy normal if it satisfies the
inequality

µ((x ∗ a) ∗ (y ∗ b)) � min{µ(x ∗ y), µ(a ∗ b)}

for all a, b, x, y ∈ X .

Example 4.2. If we define a fuzzy set ν : X → [0, 1] by ν(0) = ν(1) = ν(2) = 0.8
and ν(3) = ν(4) = ν(5) = 0.3 in Example 3.2, then ν is a fuzzy normal set in X .

Example 4.3. Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3
0 0 3 2 1
1 1 0 3 2
2 2 1 0 3
3 3 2 1 0

Then (X ; ∗, 0) is a B-algebra ([8]). If we define a map µ : X → [0, 1] by µ(0) >

µ(2) > µ(1) = µ(3) then µ is a fuzzy normal set in X . Moreover, if we define a map
σ : X → [0, 1] by σ(0) = σ(2) > σ(1) = σ(3), then σ is also a fuzzy normal set in X .

The next result, which we propose to discuss, will be used repeatedly in this paper.

Theorem 4.4. Every fuzzy normal set µ in X is a fuzzy B-algebra.

�����. For any x, y ∈ X , since µ is fuzzy normal, we have

µ(x ∗ y) = µ((x ∗ y) ∗ (0 ∗ 0)) � min{µ(x ∗ 0), µ(y ∗ 0)} = min{µ(x), µ(y)}.

Hence µ is a fuzzy B-algebra. �

Remark 4.5. The converse of Theorem 4.4 is not true. For example, the fuzzy
B-algebra µ in Example 3.2 is not fuzzy normal, since

µ((2 ∗ 5) ∗ (4 ∗ 1)) = µ(2) < µ(3) = min{µ(2 ∗ 4), µ(5 ∗ 1)}.

Definition 4.6. A fuzzy set µ in X is called a fuzzy normal B-algebra if it is a
fuzzy B-algebra which is fuzzy normal.

Example 4.7. The fuzzy sets discussed in Examples 4.2 and 4.3 are indeed fuzzy
normal B-algebras.
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Proposition 4.8. If a fuzzy set µ in X is a fuzzy normal B-algebra, then
µ(x ∗ y) = µ(y ∗ x) for all x, y ∈ X .

�����. Let x, y ∈ X . Then

µ(x ∗ y) = µ((x ∗ y) ∗ (x ∗ x)) [by (I), (II)]

� min{µ(x ∗ x), µ(y ∗ x)} [since µ is fuzzy normal]

= µ(y ∗ x) [by Proposition 3.3].

Interchanging x with y, we obtain µ(y ∗ x) � µ(x ∗ y), which proves the proposition.
�

The next result will be useful for characterizing the fuzzy normal B-algebras in
the next section.

Theorem 4.9. Let µ be a fuzzy normal B-algebra. Then the set

Xµ := {x ∈ X | µ(x) = µ(0)}

is a normal B-subalgebra of X .

�����. It is sufficient to show that Xµ is normal. Let a, b, x, y ∈ X be such
that x ∗ y ∈ Xµ and a ∗ b ∈ Xµ. Then µ(x ∗ y) = µ(0) = µ(a ∗ b). Since µ is fuzzy
normal, it follows that

µ((x ∗ a) ∗ (y ∗ b)) � min{µ(x ∗ y), µ(a ∗ b)} = µ(0).

Applying Proposition 3.3, we conclude that µ((x ∗ a) ∗ (y ∗ b)) = µ(0), which shows
that (x ∗ a) ∗ (y ∗ b) ∈ Xµ. This completes the proof. �

Theorem 4.10. The intersection of any set of fuzzy normal B-algebras is also
a fuzzy normal B-algebra.

�����. Let {µα | α ∈ Λ} be a family of fuzzy normal B-algebras and let
a, b, x, y ∈ X . Then

( ⋂

α∈Λ
µα

)
((x ∗ a) ∗ (y ∗ b)) = inf

α∈Λ
µα((x ∗ a) ∗ (y ∗ b))

� inf
α∈Λ

{
min{µα(x ∗ y), µα(a ∗ b)}

}

= min{ inf
α∈Λ

µα(x ∗ y), inf
α∈Λ

µα(a ∗ b)}

= min

{( ⋂

α∈Λ
µα

)
(x ∗ y),

( ⋂

α∈Λ
µα

)
(a ∗ b)

}
,

which shows that
⋂

α∈Λ
µα is a fuzzy normal set in X . Using Theorem 4.4, we conclude

that
⋂

α∈Λ
µα is a fuzzy normal B-algebra. �
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The union of any set of fuzzy B-algebras need not be a fuzzy B-algebra. For
example, if we define a fuzzy set σ : X → [0, 1] by σ(0) = σ(4) = 0.8 > 0.2 = σ(1) =
σ(2) = σ(3) = σ(5) in Example 3.2, then it is also a fuzzy B-algebra. Since

(µ ∪ σ)(3 ∗ 4) = 0.2 and min{(µ ∪ σ)(3), (µ ∪ σ)(4)} = 0.7,

µ ∪ σ is not a fuzzy B-algebra. Since every fuzzy normal B-algebra is a fuzzy
B-algebra, the union of fuzzy normal B-algebras need not be a fuzzy normal
B-algebra.

5. Characterization of fuzzy normal B-algebras

Theorem 5.1. Let N be a non-empty subset of X and let µN be a fuzzy set
in X defined by

µN (x) :=

{
α if x ∈ N,

β otherwise

for all x ∈ X and α, β ∈ [0, 1] with α > β. Then µN is a fuzzy normal B-algebra if
and only if N is a normal B-subalgebra of X . Moreover, in this case, XµN = N .

�����. Assume that µN is a fuzzy normal B-algebra. Let a, b, x, y ∈ X be such
that x ∗ y ∈ N and a ∗ b ∈ N . Then

µN ((x ∗ a) ∗ (y ∗ b)) � min{µN(x ∗ y), µN (a ∗ b)} = α

and so µN ((x ∗ a) ∗ (y ∗ b)) = α, which shows that (x ∗ a) ∗ (y ∗ b) ∈ N . Hence N is
a normal B-subalgebra of X . Conversely, suppose that N is a normal B-subalgebra
of X and let a, b, x, y ∈ X . If x ∗ y ∈ N and a ∗ b ∈ N , then (x ∗ a) ∗ (y ∗ b) ∈ N and
so

µN ((x ∗ a) ∗ (y ∗ b)) = α = min{µN (x ∗ y), µN (a ∗ b)}.

If x ∗ y /∈ N or a ∗ b /∈ N , then clearly

µN ((x ∗ a) ∗ (y ∗ b)) � β = min{µN (x ∗ y), µN (a ∗ b)}.

This shows that µN is a fuzzy normal set. It follows from Theorem 4.4 that µN is a
fuzzy normal B-algebra. Moreover, using Theorem 4.9 we have

XµN = {x ∈ X | µN (x) = µN (0)} = {x ∈ X | µN (x) = α} = N.

This completes the proof. �
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Theorem 5.2. Let µ be a fuzzy set in X . Then µ is a fuzzy normal B-algebra
if and only if the set U(µ;α) = {x ∈ X | µ(x) � α}, called an upper level cut of µ,
is a normal B-subalgebra of X for all α ∈ [0, 1], where U(µ;α) �= ∅.
�����. Let µ be a fuzzy normal B-algebra and assume that U(µ;α) �= ∅ for all

α ∈ [0, 1]. Let a, b, x, y ∈ X be such that x ∗ y ∈ U(µ;α) and a ∗ b ∈ U(µ;α). Then

µ((x ∗ a) ∗ (y ∗ b)) � min{µ(x ∗ y), µ(a ∗ b)} � α

and thus (x ∗ a) ∗ (y ∗ b) ∈ U(µ;α). Hence U(µ;α) is a normal B-subalgebra of X .
Conversely, suppose that U(µ;α)(�= ∅) is a normal B-subalgebra of X for every
α ∈ [0, 1]. Using Theorem 4.4, it is sufficient to show that µ is a fuzzy normal set
in X . If there are a0, b0, x0, y0 ∈ X such that

µ((x0 ∗ a0) ∗ (y0 ∗ b0)) < min{µ(x0 ∗ y0), µ(a0 ∗ b0)},

then by taking α0 := 1
2

(
µ((x0 ∗ a0) ∗ (y0 ∗ b0)) +min{µ(x0 ∗ y0), µ(a0 ∗ b0)}

)
we have

µ((x0 ∗ a0) ∗ (y0 ∗ b0)) < α0 < min{µ(x0 ∗ y0), µ(a0 ∗ b0)}.

It follows that x0 ∗ y0 ∈ U(µ;α0) and a0 ∗ b0 ∈ U(µ;α0), but (x0 ∗ a0) ∗ (y0 ∗ b0) /∈
U(µ;α0), a contradiction. Hence µ is fuzzy normal, which proves the theorem. �

Theorem 5.3. Let µ be a fuzzy normal B-algebra with Im(µ) = {αi | i ∈ Λ}
and B = {U(µ;αi) | i ∈ Λ} where Λ is an arbitrary index set. Then

(i) there exists a unique i0 ∈ Λ such that αi0 � αi for all i ∈ Λ;
(ii) Xµ =

⋂
i∈Λ

U(µ;αi) = U(µ;αi0);

(iii) X =
⋃

i∈Λ
U(µ;αi);

(iv) the members of B form a chain;
(v) B contains all upper level cuts of µ if and only if µ attains its infimum on
all normal B-subalgebras of X .

�����. (i) Since µ(0) ∈ Im(µ), there exists a unique i0 ∈ Λ such that µ(0) = αi0 .
It follows from Proposition 3.3 that µ(x) � µ(0) = αi0 for all x ∈ X so that αi0 � αi

for all i ∈ Λ.
(ii) We have

U(µ;αi0) = {x ∈ X | µ(x) � αi0} = {x ∈ X | µ(x) = αi0}
= {x ∈ X | µ(x) = µ(0)} = Xµ.

Since αi0 � αi for all i ∈ Λ, it follows that U(µ;αi0) ⊆ U(µ;αi) for all i ∈ Λ. Hence
U(µ;αi0) ⊆

⋂
i∈Λ

U(µ;αi) and so U(µ;αi0) =
⋂

i∈Λ
U(µ;αi) because i0 ∈ Λ.
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(iii) Clearly
⋃

i∈Λ
U(µ;αi) ⊆ X . For every x ∈ X there exists i(x) ∈ Λ such that

µ(x) = αi(x). This implies x ∈ U(µ;αi(x)) ⊆
⋃

i∈Λ
U(µ;αi), which proves (iii).

(iv) Since either αi � αj or αi � αj for all i, j ∈ Λ, we have either U(µ;αi) ⊆
U(µ;αj) or U(µ;αj) ⊆ U(µ;αi) for all i, j ∈ Λ.
(v) Suppose B contains all upper level cuts of µ and letN be a normalB-subalgebra

of X . If µ is constant on N , then we are done. Assume that µ is not constant on N .
We distinguish the following two cases: (1) N = X and (2) N � X . For the
case (1), we let β = inf{αi | i ∈ Λ}. Then β � αi and so U(µ;αi) ⊆ U(µ;β) for
all i ∈ Λ. Note that X = U(µ; 0) ∈ B because B contains all upper level cuts of µ.
Hence there exists j ∈ Λ such that αj ∈ Im(µ) and U(µ;αj) = X . It follows that
U(µ;β) ⊇ U(µ;αj) = X so that U(µ;β) = U(µ;αj) = X because every upper level
cut of µ is a normal B-subalgebra of X . Now it is sufficient to show that β = αj .
If β < αj , then there exists k ∈ Λ such that αk ∈ Im(µ) and β � αk < αj . This
implies that U(µ;αk) � U(µ;αj) = X , a contradiction. Therefore β = αj . If the
case (2) holds, consider the restriction µN of µ to N . By Theorem 5.1, µN is a
fuzzy normal B-algebra. Let ΛN = {i ∈ Λ | µ(y) = αi for some y ∈ N} and
BN = {U(µN ;αi) | i ∈ ΛN}. Noticing that BN contains all upper level cuts of µN ,
we conclude that there exists z ∈ N such that µN (z) = inf{µN(x) | x ∈ N}, which
implies that µ(z) = inf{µ(x) | x ∈ N}.
Conversely, assume that µ attains its infimum on all normal B-subalgebras of X .

Let U(µ;α) be an upper level cut of µ. If α = αi for some i ∈ Λ, then clearly
U(µ;α) ∈ B. Assume that α �= αi for all i ∈ Λ. Then there does not exist x ∈ X

such that µ(x) = α. Let N = {x ∈ X | µ(x) > α}. Let a, b, x, y ∈ X be such that
x ∗ y ∈ N and a ∗ b ∈ N . Then µ(x ∗ y) > α and µ(a ∗ b) > α. It follows that

µ((x ∗ a) ∗ (y ∗ b)) � min{µ(x ∗ y), µ(a ∗ b)} > α

so that (x ∗ a) ∗ (y ∗ b) ∈ N . This shows that N is a normal B-subalgebra of X .
By hypothesis, there exists y ∈ N such that µ(y) = inf{µ(x) | x ∈ N}. Now
µ(y) ∈ Im(µ) implies µ(y) = αi for some i ∈ Λ. Hence we get inf{µ(x) | x ∈ N} = αi.
Obviously αi � α, and so αi > α by assumption. Note that there does not exist
z ∈ X such that α � µ(z) < αi. It follows that U(µ;α) = U(µ;αi) ∈ B. This
concludes the proof. �

Theorem 5.4. Let µ be a fuzzy set in X with a finite image Im(µ) =
{α0, α1, . . . , αk} where αi < αj whenever i > j. Let {Nn | n = 0, 1, . . . , k} be
a family of normal B-subalgebras of X such that
(i) N0 ⊂ N1 ⊂ . . . ⊂ Nk = X ,
(ii) µ(Ñn) = αn where Ñn = Nn \Nn−1 and N−1 = ∅ for n = 0, 1, . . . , k.
Then µ is a fuzzy normal B-algebra.
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�����. According to Theorem 4.4, it is sufficient to show that µ is a fuzzy
normal set in X . Let a, b, x, y ∈ X . If x ∗ y ∈ Ñn and a ∗ b ∈ Ñn for every n, then
(x ∗ a) ∗ (y ∗ b) ∈ Nn since Nn is a normal B-subalgebra of X . Hence

µ((x ∗ a) ∗ (y ∗ b)) � αn = min{µ(x ∗ y), µ(a ∗ b)}.

If x ∗ y ∈ Ñn and a ∗ b ∈ Ñm where 0 � m < n � k, then x ∗ y ∈ Nn and
a ∗ b ∈ Nm ⊆ Nn. It follows that (x ∗ a) ∗ (y ∗ b) ∈ Nn. Therefore

µ((x ∗ a) ∗ (y ∗ b)) � αn = µ(x ∗ y).

Since m < n implies αn < αm, we have µ(a ∗ b) = αm < αn. Consequently,

µ((x ∗ a) ∗ (y ∗ b)) � αn = min{µ(x ∗ y), µ(a ∗ b)}.

Similarly for the case x ∗ y ∈ Ñm and a ∗ b ∈ Ñn for 0 � m < n � k, proving the
result. �
We have introduced the notion of fuzzy (normal) B-algebras and discussed its

characterization. This ideas could enable us to discuss the direct products of fuzzy
(normal) B-algebras, fuzzy topological B-algebras, and offer a new construction of
quotient B-algebras via fuzzy B-algebras. They also suggest possible problems to
fuzzify the quotientB-algebras discussed in [10], and compare them with two fuzzified
quotient B-algebras.
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