Previous |  Up |  Next

Article

Keywords:
half partially ordered group; half cyclically ordered group; half $lc$-group; lexicographic product
Summary:
In this paper we introduce and investigate the notion of half cyclically ordered group generalizing the notion of half partially ordered group whose study was begun by Giraudet and Lucas.
References:
[1] Š.  Černák: Lexicographic products of cyclically ordered groups. Math. Slovaca 45 (1995), 29–38. MR 1335837
[2a] Š.  Černák: Cantor extension of a half lattice ordered group. Math. Slovaca 48 (1998), 221–231. MR 1647682
[2b] Š.  Černák: On the maximal Dedekind completion of a half partially ordered group. Math. Slovaca 46 (1996), 379–390. MR 1472632
[3] M.  Droste, M.  Giraudet and D.  Macpherson: Periodic ordered permutation groups and cyclic orderings. J.  Combin. Theory Ser. B, 63 (1995), 310–321. DOI 10.1006/jctb.1995.1022 | MR 1320173
[4] L.  Fuchs: Partially Ordered Algebraic Systems. Addison-Wesley, Reading, 1963. MR 0171864 | Zbl 0137.02001
[5] M.  Giraudet and F.  Lucas: Groupes à moitié ordonnés. Fund. Math. 139 (1991), 75–89. DOI 10.4064/fm-139-2-75-89 | MR 1150592
[6] M.  Giraudet and J.  Rachůnek: Varieties of half lattice ordered groups of monotonic permutations in chains. Prepublication No  57, Université Paris  7, CNRS Logique (1996).
[7] J.  Jakubík: Lexicographic products of partially ordered groupoids. Czechoslovak Math. J. 14 (1964), 281–305. (Russian) MR 0167558
[8] J.  Jakubík: On extended cyclic orders. Czechoslovak Math.  J. 44 (1994), 661–675. MR 1295142
[9] J.  Jakubík: On half lattice ordered groups. Czechoslovak Math.  J. 46 (1996), 745–767. MR 1414606
[10] J.  Jakubík: Lexicographic product decompositions of cyclically ordered groups. Czechoslovak Math.  J. 48 (1998), 229–241. DOI 10.1023/A:1022881202595 | MR 1624307
[11] J.  Jakubík: Lexicographic products of half linearly ordered groups. Czechoslovak Math. J 51 (2001), 127–137. DOI 10.1023/A:1013761906636 | MR 1814638
[12] J.  Jakubík and Š.  Černák: On convex linearly ordered subgroups of a $h\ell $-group. Math. Slovaca 50 (2000), 127–133. MR 1763115
[13] A. I.  Maľcev: On ordered groups. Izv. Akad. Nauk SSSR, ser. mat. 13 (1949), 473–482. (Russian) MR 0032645
[14] V.  Novák and M.  Novotný: Universal cyclically ordered sets. Czechoslovak Math.  J. 35 (1986), 158–161. MR 0779343
[15] V.  Novák and M.  Novotný: On representations of cyclically ordered sets. Czechoslovak Math.  J. 39 (1989), 127–132.
[16] A.  Quilot: Cyclic orders. European J.  Combin. 10 (1989), 477–488. DOI 10.1016/S0195-6698(89)80022-8 | MR 1014556
[17] L.  Rieger: On ordered and cyclically ordered groups I, II, III. Věstník král. čes. spol. nauk (1946), 1–31; (1947), 1–33; (1948), 1–26. (Czech) MR 0020995
[18] S.  Swierczkowski: On cyclically ordered groups. Fund. Math. 47 (1959), 161–166. DOI 10.4064/fm-47-2-161-166 | MR 0110759 | Zbl 0096.01501
[19] Dao Rong Ton: Torsion classes and torsion prime selectors of $h\ell $-groups. Math. Slovaca 50 (2000), 31–40. MR 1764343
Partner of
EuDML logo