[1] V. D. Belousov:
Foundations of the Theory of Quasigroups and Loops. Nauka, Moscow, 1967. (Russian)
MR 0218483
[2] A. Bigard, K. Keimel and S. Wolfenstein:
Groupes et Anneaux Réticulés. SpringerVerlag, Berlin-Heidelberg-New York, 1977.
MR 0552653
[3] S. Burris and H. P. Sankappanavar:
A Course in Universal Algebra. Springer-Verlag, Berlin-Heidelberg-New York, 1981.
MR 0648287
[5] C. C. Chang:
A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80.
MR 0122718 |
Zbl 0093.01104
[6] R. Cignoli:
Free lattice-ordered abelian groups and varieties of $MV$-algebras. Proc. IX. Latin. Amer. Symp. Math. Log., Part 1, Not. Log. Mat. 38 (1993), 113–118.
MR 1332526 |
Zbl 0827.06012
[7]
Lattice-Ordered Groups (Advances and Techniques). A. M. W. Glass and W. Charles Holland (eds.), Kluwer Acad. Publ., Dordrecht-Boston-London, 1989.
MR 1036072 |
Zbl 0705.06001
[9] V. M. Kopytov and N. Ya. Medvedev:
The Theory of Lattice Ordered Groups. Kluwer Acad. Publ., Dordrecht-Boston-London, 1994.
MR 1369091
[10] T. Kovář: A general theory of dually residuated lattice ordered monoids. Thesis, Palacký University Olomouc, 1996.
[11] D. Mundici:
Interpretation of $AF C^{*}$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63.
MR 0819173 |
Zbl 0597.46059
[12] D. Mundici:
$MV$-algebras are categorically equivalent to bounded commutative $BCK$-algebras. Math. Japon. 31 (1986), 889–894.
MR 0870978 |
Zbl 0633.03066
[14] J. Rachůnek:
$MV$-algebras are categorically equivalent to a class of $DRl_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441.
MR 1667115
[15] K. L. N. Swamy:
Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114.
MR 0183797 |
Zbl 0138.02104