Article
Keywords:
extremal distance; conformal capacity; Beurling theorem
Summary:
We give a new proof of Beurling’s result related to the equality of the extremal length and the Dirichlet integral of solution of a mixed Dirichlet-Neuman problem. Our approach is influenced by Gehring’s work in $\mathbb{R}^3$ space. Also, some generalizations of Gehring’s result are presented.
References:
[cour] R. Courant:
Dirichlet’s Principle, Conformal Mappings and Minimal Surfaces. New York, Interscience Publishers, Inc., 1950.
MR 0036317
[gar] F. P. Gardiner:
Teichmüller Theory and Quadratic Differentials. New York, A Wiley-Interscience Publication, 1987.
MR 0903027 |
Zbl 0629.30002
[tub] M. Berger, B. Gostiaux:
Differential Geometry: Manifolds, Curves and Surfaces. Springer-Verlag, 1987.
MR 0903026
[vai] J.Väisälä:
On quasiconformal mappings in space. Ann. Acad. Sci. Fenn. Ser. A 298 (1961), 1–36.
MR 0140685 |
Zbl 0096.27506