Previous |  Up |  Next

Article

Keywords:
conformal mapping; Quasiconformal curve; Bieberbach polynomials; complex approximation
Summary:
Let $C$ be the extended complex plane; $G\subset C$ a finite Jordan with $ 0\in G$; $w=\varphi (z)$ the conformal mapping of $G$ onto the disk $ B\left( {0;\rho _{0}}\right):={\left\rbrace {w\:{\left| {w}\right| }<\rho _{0}} \right\lbrace }$ normalized by $\varphi (0)=0$ and ${\varphi }^{\prime }(0)=1$. Let us set $\varphi _{p}(z):=\int _{0}^{z}{{\left[ {{\varphi } ^{\prime }(\zeta )}\right] }^{{2}/{p}}}\mathrm{d}\zeta $, and let $\pi _{n,p}(z)$ be the generalized Bieberbach polynomial of degree $n$ for the pair $(G,0)$, which minimizes the integral $ \iint \limits _{G}{{\left| {{\varphi }_{p}^{\prime }(z)-{P}_{n}^{\prime }(z)}\right| }}^{p}\mathrm{d}\sigma _{z}$ in the class of all polynomials of degree not exceeding $\le n$ with $P_{n}(0)=0$, ${P}_{n}^{\prime }(0)=1$. In this paper we study the uniform convergence of the generalized Bieberbach polynomials $\pi _{n,p}(z)$ to $\varphi _{p}(z)$ on $\overline{G}$ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency.
References:
[1] F. G. Abdullayev: On the orthogonal polynomials in domains with quasiconformal boundary. Dissertation, Donetsk (1986). (Russian)
[2] F. G. Abdullayev: On the convergence of Bieberbach polynomials in domains with interior zero angles. Dokl. Akad. Nauk. Ukrain. SSR, Ser. A 12 (1989), 3–5. (Russian) MR 2209974
[3] F. G. Abdullayev: On the convergence of Fourier series by orthogonal polynomials in domains with piecevise-quasiconformal boundary. Theory of Mappings and Approximation, Naukova Dumka, Kiev, 1989, pp. 3–12.
[4] F. G. Abdullayev: Uniform convergence of the generalized Bieberbach polynomials in regions with non zero angles. Acta Math. Hungar. 77 (1997), 223–246. DOI 10.1023/A:1006590814228 | MR 1485847 | Zbl 0904.41003
[5] F. G. Abdullayev and A. Baki: On the convergence of Bieberbach polynomials in domains with interior zero angles. Complex Anal. Theor. & Appl. 34 (2001). MR 1908583
[6] F. G. Abdullayev and A. Çavuş: On the uniform convergence of the generalized Bieberbach polynomials in regions with quasiconformal boundary. (to appear).
[7] L. V. Ahlfors: Lectures on Quasiconformal Mappings. Princeton, NJ: Van Nostrand, 1966. MR 0200442 | Zbl 0138.06002
[8] V. V. Andrievskii: Uniform convergence of Bieberbach polynomials in domains with zero angles. Dokl. Akad. Nauk. Ukrain. SSR, Ser. A (1982), 3–5. (Russian) MR 0659928
[9] V. V. Andrievskii: Uniform convergence of Bieberbach polynomials in domains with piecewise quasiconformal boundary. Theory of Mappings and Approximation of Functions, Kiev, Naukova Dumka, 1983, pp. 3–18. (Russian) MR 0731089
[10] V. V. Andrievskii: Convergence of Bieberbach polynomials in domains with quasiconformal boundary. Trans. Ukrainian Math. J. 35 (1984), 233–236. DOI 10.1007/BF01092167
[11] V. I. Belyi: Conformal mappings and the approximation of analytic functions in domains with a quasiconformal boundary. Math. USSR-Sb. 31 (1977), 289–317. DOI 10.1070/SM1977v031n03ABEH002304 | Zbl 0388.30007
[12] V. I. Belyi and I. E. Pritsker: On the curved wedge condition and the continuity moduli of conformal mapping. Ukrain. Mat. Zh. 45 (1993), 763–769. DOI 10.1007/BF01061436 | MR 1299962
[13] P. J. Davis: Interpolation and Approximation. Blaisdell Publishing Company, 1963. MR 0157156 | Zbl 0111.06003
[14] D. Gaier: On the convergence of the Bieberbach polynomials in regions with corners. Constr. Approx. 4 (1988), 289–305. DOI 10.1007/BF02075463 | MR 0940296 | Zbl 0645.30002
[15] D. Gaier: On the convergence of the Bieberbach polynomials in regions with piecewise-analytic boundary. Arch. Math. 58 (1992), 462–470. DOI 10.1007/BF01190116 | MR 1156578 | Zbl 0723.30008
[16] D. M. Israfilov: On the approximation properties of extremal polynomials. Dep. VINITI, No. 5461 (1981). (Russian) MR 0648384
[17] M. V. Keldych: Sur l’approximation en moyenne quadratique des fonctions analytiques. Math. Sb. 5(47) (1939), 391–401. MR 0002591
[18] I. V. Kulikov: $L_{p}$-convergence of Bieberbach polynomials. Math. USSR-Izv. 15 (1980), 349–371. DOI 10.1070/IM1980v015n02ABEH001240 | MR 0552553 | Zbl 0443.30049
[19] O. Lehto and K. I. Virtanen: Quasiconformal mappings in the plane. Springer-Verlag, Berlin, 1973. MR 0344463
[20] S. N. Mergelyan: Certain questions of the constructive theory of functions. Trudy Math. Inst. Steklov 37 (1951). (Russian) MR 0049390
[21] Ch. Pommerenke: Univalent Functions. Göttingen, 1975. MR 0507768 | Zbl 0298.30014
[22] I. I. Privalov: Introduction to the theory of functions of a complex variable. Nauka, Moscow, 1984. MR 0779289 | Zbl 0571.30001
[23] V. I. Smirnov and N. A. Lebedev: Functions of a Complex Variable. Constructive Theory. The M.I.T. PRESS, 1968. MR 0229803
[24] I. B. Simonenko: On the convergence of Bieberbach polynomials in the case of a Lipshitz domain. Math. USSR-Izv. 13 (1980), 166–174. DOI 10.1070/IM1979v013n01ABEH002017
[25] P. K. Suetin: Polynomials orthogonal over a region and Bieberbach polynomials. Proc. Steklov Inst. Math. 100 (1971), Providence, Rhode Island: Amer. Math. Soc., 1974. MR 0463793 | Zbl 0282.30034
[26] P. M. Tamrazov: Smoothness and Polynomial Approximation. Naukova Dumka, Kiev, 1975. (Russian)
[27] A. Torchincky: Real variables. Calif. Addison-Wesley, 1988.
[28] J. L. Walsh: Interpolation and approximation by rational functions in the complex domain. Moscow, 1961. (Russian) MR 0218586 | Zbl 0106.28103
[29] Wu Xue-Mou: On Bieberbach polynomials. Acta Math. Sinica 13 (1963), 145–151. MR 0168744 | Zbl 0154.07004
Partner of
EuDML logo