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Abstract. Let C be the extended complex plane; G C C' a finite Jordan with 0 € G}
w = p(z) the conformal mapping of G onto the disk B (0; gg) := {w: |w| < po} normalized

by ¢(0) = 0 and ¢'(0) = 1. Let us set @p(z) := [ [@/(C)]wp d¢, and let mn p(2) be

the generalized Bieberbach polynomial of degree n for the pair (G,0), which minimizes

the integral [ |¢p(2) — PA(z)!p do: in the class of all polynomials of degree not exceeding
G

< n with Pp(0) = 0, P;(0) = 1. In this paper we study the uniform convergence of the
generalized Bieberbach polynomials 7y p(2) to @p(2) on G with interior and exterior zero
angles and determine its dependence on the properties of boundary arcs and the degree of
their tangency.

Keywords: conformal mapping, Quasiconformal curve, Bieberbach polynomials, complex
approximation

MSC 2000: 30C30, 30E10, 30C70

1. INTRODUCTION AND MAIN RESULT

Let C be the extended complex plane; G a finite Jordan domain with 0 € G
L :=0G, Q := ext G; w = ¢(z) the conformal mapping of G onto the disk B(0; gg) :=
{w : |w| < go} normalized by ¢(0) = 0, ¢'(0) = 1; where g = 9o (0, G) is called the
conformal radius of G with respect to 0.

It is well known [22, p. 435] that the unique function minimizing the integral

1/p
(L1) =17y = ( [[17GIPa.) " >0

G
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in the class of all analytic functions in G normalized by f(0) = 0, f/(0) = 1 is the
function

pp(z) = /0 [ (O]Pd¢, zeG.

Let p > 0. Using a method similar to the one given in [13, p. 137], it is
seen that there exists a polynomial 7, ,(z) furnishing a minimum to the integral
llep — Pull L1(G) in the class of polynomials P, (z) of degree not exceeding n normal-
ized by P,(0) =0, P, (0) =1, and if p > 1 these polynomials 7, ,(z) are determined
uniquely [13, p. 142]. We call such a polynomial ,, ,,(z) the n-th generalized Bieber-
bach polynomial for the pair (G, 0) as in [16]. In the case of p = 2, let us emphasize
that m, 2(2) coincides with the Bieberbach polynomial for the pair (G,0), see, for
example, [14].

If G is a Carathéodory region, then (¢, — Ty p |L1(G) — 0 for n — oo [28, p. 63],
P

and so the sequence {7, ,(z)} converges uniformly to ¢, (%) on compact subsets of G.

Our purpose is to extend the uniform convergence of the sequence {m, ,(2)} to ¢, ()

on G, and to find a constant v = v (G, p) > 0 satisfying the inequality
(1.2) lep = mnpllegy = meag{\@p(z) — Tnp(2)[}

depending on the properties of G.

In the case of p = 2, the estimate (1.2) has been studied in [17], [20], [25], [29]
when L satisfies certain smoothness conditions, and in [2], [5], [8], [9], [10], [14],
[15], [18], [24] for L having some zero or non zero angles. In the case of p > 2 the
existence of a v > 0 satisfying (1.2) for some regions with quasiconformal boundary
has been investigated in [16]. In the case of p > p (L) > 1, when L is quasiconformal
and additionally satisfies certain conditions, constants v > 0 satisfying (1.2) and
explicitely depending on geometric properties of the boundary L have been studied
in [4] and [6]. It is well known, however, that even though the qusiconformal curves
have many properties, they cannot contain zero angles.

In this paper, we propose to study the estimate (1.2) in domains with certain
exterior and interior zero angles.

We begin with some definitions. Throughout this paper, ¢, c1,co, ... denote posi-
tive and €,¢€1, €9, . . . sufficiently small positive constants which depend on G in gen-
eral.

Definition 1. [19, p. 97] We say that a Jordan curve L is K-quasiconformal if
there exists a K-quasiconformal mapping f of a domain D D L such that f (L) is a
circle.

Definition 2. A Jordan arc ¢ is called K-quasiconformal when ¢ is a part of
some closed K-quasiconformal curve.
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Definition 3. [3] We say that G C PQ (K,a,08), K > 1, a 2 0, 8 > 0, if

L := OG can be expressed as the union of a finite number of K-quasiconformal
arcs, K =  ax {K;}, connecting at points zg, 21, . . ., Zm, such that L is a locally
IIxM

K-quasiconformal at zp and in the local co-ordinate system (z,y) with origin at z;,
1 < j < m, the following conditions are satisfied:

a)for j=1,p

1+«

{z:eriy: car gygcyrl“", 0
0

{z=z+1iy: [y| > eon,
b) for j=p+1,m

{z =x+iy: C3x1+5 <y < C4x1+5,

0
{z=2+iy: |yl > eax, 0

for some constants —0o < ¢ < g < 00, —00 < €3 < €4 < 00, &; > 0,1 =1,4.

It is clear from Definition 3 that each domain G C PQ (K, «, ) may have p
exterior and m — p interior zero angles. If a domain G does not have exterior zero
angles (p = 0) (interior zero angles (p = m)), then we write G C PQ (K,0,0) (G C
PQ (K, a,0)).

If a domain G does not have such angles (¢« = § = 0), then G is bounded by a
K-quasiconformal curve.

We introduce the following notation:

\/(K2+1)2+32K4—K2—1

= K):= ;
p1 = p1 (K) 2K2 )
Bo € 0,\/5—1 and Boe 12—1,\/5—1 are arbitrary numbers;
2
KZ
= K) = —————
/61 ﬁl(pv ) pK2+3K2+17
2K24+1) -2 +16(p+4) (K2+ 1) +p (2K2+1) — 2
B2 =2 (p; K) = \/[p( ) 2 ( ) ) ( ) —

8(K?+1) ;
K*:=max{K: (1 < (2}.

Theorem 1. Let p > 2(1+ (), and assume that G C PQ (K,«a,3) for some
K>1,a<2/pandf <min{f;2/(p+2)}, if fo > 0, and B =0, if By = 0. Then,
for any n > 3,

| | Vinlnn (lnn)(2a71)/(2a) , D=2,
— Ty o S¢
Pp pllc(@) 1 (In n)(ap*Z)/(Mp) , p>2.
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Theorem 2. Let p > 2(1+ (o), for By # 0, and assume that G C PQ (K, 0, ()
for some K > 1, 3 < min{fBy; $1}. Then, for any n > 2,

lep = Tn.p |c(§) <ean”7,

. 1
for each v with 0 < v < SRT

Theorem 3. Let 2 < p < p1, and assume that G C PQ (K, 0, 3) for some K > 1,
2
£—-1<f < min {ﬂl; %} Then, for any n > 2,

H%@p — Tn,p |c(§) <egn’7,

1—2K2(26+2—p)

for each v with 0 < v < DR .

Theorem 4. Let p > 2(1 + f3), and assume that G C PQ(K,0,() for some
K>1, 31 < <min {Bo; Iﬁ} Then, for any n > 2,

HQDP - ﬂ—n,p‘lc(a) < C4n7’y,

2—(p+2)B

for each v with 0 < v < T8 (K241 -

Theorem 5. Let 2 — # < p < 2, and assume that G C PQ (K,0, ) for some

K >1, 3 <min {ﬁl; 2(;:21); 1+2I§;{(§]_2) } Then, for any n > 2,

HQDP - ﬂ—n,p‘lc(a) < Can'y’

1—2K2(26+2—p)

for each v with 0 < v < DR .

Theorem 6. Let % < p < 2, and assume that G C PQ (K,0,() for some 1 <
K < K*, 81 < 8 < 2. Then, for any n > 2,

H%@p — Tn,p |c(§) <egn’7,

for each v with 0 < v < % — %(2ﬂ+2fp).
Remarks.
a) In the case of p = 2, Theoreml is the same one as in [8] or [9];
b) Theorems 1-6 extend the results in [4, 6] and [16] to domains bounded by a
piecewise quasiconformal curve with zero angles.
¢) The statements of Theorems 2, 3, 5, 6 are also correct in the case of p = 2.
However, much better results were obtained in [5].
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2. SOME AUXILIARY FACTS

Let G C C be finite domain bounded by a Jordan curve L and let w = ®(z) (w =
@(2)) be the conformal mapping of Q(G) onto Q := {w: |w| > 1} ({w: |w| < 1})
normalized by ®(c0) = oo, lim ®(z)/z >0 (p(0) =0, &'(0) > 0).

For ¢ > 0, let Ly i= {2: [8(2)] = t, t > 1, |¢(t)] = t,¢ < 1}, Gy = int L,
Q; = ext L;.

Let L be a K-quasiconformal curve. Then there exists a quasiconformal reflection
a across L such that a(G) = Q, a(?) = G, « fixes the points of L and « satisfies
the condition

(2.1) la(z) = 2|~ |z 2|, 2 €L,

in some neighbourhood of L [7, p. 76] (see [14, Lemma 1]).
(Here and throught this paper the symbols “ a ~ b” and “ a < b ” stand for
c1a < b < caa and a < ¢1b for some ¢, o respectively.)

Lemma 2.1. [1] Let L be a K-quasiconformal curve; z1 € L, z9,23 € G N
{z: |z —2z1] < c1d(z1,LRr,)}, wj = &(25) (22,23 € GN{z: |z — 21| < cad(21, Lry) },
w; = ®(25)), j =1,2,3. Then,

1) the statements |21 — za| < |21 — 23] and |w; — we| < |wy — ws| are equivalent.

So are |z1 — 23| & |21 — 23| and |w; — wa| & |wy — ws);

2) if |z1 — 22| < |21 — 23], then

-2 K2
Z1 — %3 w1 — W3
< ‘

”U)l—w?,

w1 — w2 Z1 — 22 w1 — w2

and, consequently, for any z3 € Ly, (23 € Ly,)

2 -2
|wn 7’11}2‘K < |z1 — 29| < |un 7’11}2‘K

where 1 < Rg <2 and rg = Ry L are fixed constants.

Lemma 2.2. [3, 11] Let L be a K-quasiconformal curve. Then for every z € L
and zo € G there exist an arc {(z, z9) in G joining z to zo and having the following
properties:

i) d(¢,L) =~ |¢ — z| for every ¢ € £(z, 2p),

ii) for every (1, (o € £(z, 20), if £(C1, C2)is the subarc of £(z, zp), then mes £(Cy, ) <
IG1 — Gl
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Lemma 2.3. [9] Let L be a K-quasiconformal curve. Then for every rectifiable
arc £ C G mes/? ~ mes «({).

Lemma 2.4. [5] Let L be a K-quasiconformal curve, G. = {z: z € G,d(z,L) <
e}. Then
K41

5
mes p(Ge) <%, 4 9K

Note 2.1. If G is an arbitrary continuum, then we can chose § = % [26, p. 181].

3. SOME PROPERTIES OF THE DOMAINS G € PQ(K, «a, 3)

Suppose that a domain G € PQ(K,«a,f) is given. For the sake of simplicity,
but without loss of generality, we assume that « > 0, 8 > 0; p = 1, m = 2,

z1 = 1, zg = —1; (—1,1) C G and let the local co-ordinate axes in Definition 1
be parallel to OX and OY in the co-ordinate system; L' := {z: z € L,Imz > 0},
L?: ={z: z € L,Imz < 0}. Then z, is taken as an arbitrary point on L? (or on L'

subject to the chosen direction).

We recall that the domain G € PQ(K, a, 3) has interior and exterior zero angles
in the neighbourhood of the points z; = 1 and z, = —1, respectively. Therefore,
following the argument in [9], we can say that the function w = ®(z)(w = ¢(z)) for
the domain G € PQ(K, «, ) satisfies the conditions described in Lemma 2.1 in the
neighbourhood of the point zo = —1 (217 = 1). So, we can easily get from Lemma 2.1

(3.1) d(z,L) < (18(z)] = D575 2 = 1] < |3(z) — (1),
Vze My :={z€G: |z+1| >e1},
Az, L) < (10()] = DF 75 2+ 1] < [@(=) — (1),
VzeMy:={2€Q: |z—1| >e2} >e2}.
On the other hand, using the properties of the functions w = ®(z)and w = @(z) in
the neighbourhood of the point z; = 1 and 2z = —1, respectively, (see [9, 12]) we

obtain

(32) |z—1<[~I|®(z) - dW)]* , |41 <[-n|az) -
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4. ESTIMATION OF THE C-NORM OF POLYNOMIALS

Lemma 4.1. Let G be Jordan domain, such that for every z € L there exist an
arc v(z,0) in G joining 0 to z and having the following properties:
i) mesvy(Ci,C2) < [¢1 — G2l for every (i, (2 € v(2,0),
ii) there exist a monotone increasing function f(t) such that d({,L) > f(|¢ — z|)
for every ¢ € v(z,0). Then, for all polynomials P,(z), deg P,, < n, P,(0) =0,

C
IPde < { [0 afizl,e. >0
En—

Proof. When p = 2 the proof is given in [9]. In the case p # 2, we use the
familiar methot given in [9]. Let z € L be an arbitrary point. For an € > 0 small
enough, if v1 := {¢: ¢ € (2,0), |¢ — 2| <en™2} and 2 = 7(2;0) \ y1, then

[P (2)] <

/PJL(C)dclé \PA(C)IIdCH/ [PL(O)]]dd]
~+(:0) 71 72

It is well known that || P} [/ G < cln2HPnHC(5) and

1
PO < gy VPl

for all £ € G and p > 0, by the mean-value property [22, p. 432]. Therefore, since

mesy; < caen~2 for a ¢y > 0 which is independent of €, we obtain

|+ eall P, [ d7ROa¢

Y2

P < el Baloga |

71

¢ 2
< eare||Pullegg +C4||Prll||Lp/ 2f_5(t)dt~
En—

Using the maximum modulus principle and choosing ¢ such that ecjco < 1, the proof
is complete. O

Corollary 4.1. Let G € PQ(K,«,3) for some K > 1, a > 0, 8 > 0. Then

1Pullc@) =< AnHPr/LHLp(G)v

where
np 2Dy < 9(3 4 1);
A, =< Inn, p=2(8+1);
c, p>2(8+1).

649



5. ESTIMATE OF L,-NORM FOR SOME CAUCHY INTEGRALS

Let G be an arbitrary Jordan domain and v € €2 an arc rectifiable except for one
of its endpoints of its z9 € L which satisfies the following conditions:

i) mesy(C1,C2) < |G — Cf, for all (1, ¢z € ;
ii) there exists a monotone increasing function g(t) such that d(¢, L) > g (|¢ — zo])
for all ¢ € .

Lemma 5.1. Let | > 0. .Let on the arc vy a measurable function f(z) be given
such that there exists a monotone increasing function v(t), v(0) = 0, with |f(¢)] <
v(|¢ = zp|) for all ¢ € . Then, for the function

f(Q)
F. = [ —=d
'Y(Z) /y C — C7 z ¢ ’Y?
the following estimate is satisfied:

/112 4(1-p) ¢ ?
|F)|" <@ /V(t)dt
0

2(2—p cl 1
g%/ VA(t) {Z n h”;;(t) + hg,l(t)] dt,1 <p<2
0

+

cl a3p 1 2 2
/ V() {t v +t—2h(’;’g(t)+h;’g(t)} dt p>2,
0

where

Epl=2dr
boalt) = |y

4 .
Proof. Foreach ¢ € v, let us set G = |J G*, where
i=1
G' ={z: |z — 2| = 20} N G;
G?={z: 2|¢ — 20| < |2 — 20| < 20} N G;
G3:{z: %K—Zo\ |z—z0\<2\§—z0\}ﬂG;
G* = {z: |z — 20 < 3¢ — 20|} NG.

NN

Then,

(5.1) [1aq o Zj://M (Cf_(<2)2 dc‘pdgz.
i
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For all z € G' we have

zZ— Z zZ— Z
€21 > 11z 20l = 1C — 20ll 2 [Jz 20l =8 > |2 = zo] - Z 200 - 220,

and

d pdaz<// - 0| ngzo|dg]
4/2:7423_741{/05 ()dt} < 20 P>UO ()dt]p, p>1

For the estimate of the integral on G*, k = 2,3, 4, we first apply Minkowski’s in-

equality to the interior integral

o // U |C—zdicy] Gy c-ﬂ do.
/7[/|<fgﬁzfﬂ}d@_4%.

After that, using the generalized Minkowski’s inequality [27, p. 286] for p > 2, and

Holder’s inequality for 1 < p < 2, we obtain

oo < (ff o) (][] 22

b
2

(!/da){ <z<>|<|//|C T .}

1 <p<2
» 2/p

o ne{f[f(Z5) |l

i) k = 2. Since for all ( €y and z € G?

Zo‘

.
€212 |1z — 20l — I — 2ol > ES22,

d(z,L) > ||z — 20l — I — 20l > "2*27'20'
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we get

cl cl 5 £ 2
p d r ¢
Jy < (2015 /1Lﬁ@%ﬂ/n < <€“L7"/ O |, 1<p
0 ¢ T o 1

[0 // %} ) <[ ol [ ]
<{Adﬂuﬁ5@&}é p>2.

ii) k = 3. In this case |( — z| > [ — 2z0]; d(z,L) > g(|¢ — z0]) > g(]z — #0]), and we
obtain

P ct 2t) [* rdr H p et vA(t) [t rdr 3
J3<Z2(1‘5){/ Y / —dt] < ?0-% {/ —/ —dt} 1<p<2;
o t? Jiag(r) o t2 Jo g(r)

J3_<{/0clyigt)|: p 2

2t £ 2 el 2 ¢ 2 z
rdr v4(t) rdr |°*
dt -<{/ [/ :| dt},p22.
/t/2 gp/Z(T)} } o 12 Lo gP/3(r)
iii) k = 4. In this case | — 2| = |¢ — 20| — |2z — 20| = %
cl t g
P d
J4<€2(12){/ VZ(t)/ —Tdt} , l<p<y
0 o 79(r)
2 5
do, z
Jg = dt
! {/ U/zmpgw |zzO>] }
ct 1=p dp g :
2
=< ve(t /7] dt} , Dp>2.
R

Using the estimates of the terms Jy, k = 2,3, 4, introduced above from (5.1)—(5.4)
and using the evident inequality

and we have analogously

al’ + |b]?, p <1,
a b < la|” + [b]
22~ (lal” + o), p>1

we finish the proof. O

652



Corollary 5.1. Let G € PQ(K,a,0) for some K > 1, a > 0; v(t) = 1%, Then

HF'H |1n€\%.£25%, a<2(17%); 1<p<2,
< s
Y Lp(G) 622,) , a < %7 p> 2
Corollary 5.2. Let G € PQ(K,0,0) for some K > 1, 8 > 0; v(t) = -8
Then .
|1H£‘%€%:)ﬁ, ﬁ<2(p_1). 1<p<2’

24p

F! =< B
H 'YHL;D(G) {62 (g:pm, < %; p>2

6. CONTINUITY OF THE FUNCTION ¢, ON G

Lemma 6.1. Let p > 1 and assume that G € PQ(K, «, ) for some K > 1, o > 0;
(3 < p— 1. Then the function

%@wlﬁwmﬁmx

can be extented to G continuously.

Proof. It is clear that ¢,(2) is uniformly continuous on every compact subset
of G for all p > 0. Let us show that ¢,(z) is continuous on G. Let z and ¢ be two
arbitrary points in G. Which are close to L and w := ¢(z), 7 := ¢((). Without loss
of generality, we assume that |w| < |7| and argw < arg 7. Let us set

Di(r,w) :={t: argt = argw, |w| > |t| > |w| — |w — 7]},
Do(r,w) :={t: argw < argt < argT, |t| = |w| — |w— 7]},
Ls3(r,w) :={t: argt = argr, |7| > |t| > |w| — |w —7|}.
3 -
Then I'(1,w) := U I'j(7,w) is an arc joining w to 7 in B(0;00) and I'(z,¢) :=
Y(D(7,w)) (here wj:sl the inverse function of ¢) is an arc in G joining z and (. Since

¢),(2) is analytic in G (we consider the branch of [¢,(¢)] 2/? which takes the value 1
at the point 0), it follows that

(6.1) |0 (2) = #p(Q)] < / #(©)]7] de|.
D(.0)

Let & be a point on I'(z,¢) and d(¢, L) be the distance from £ to L. Then if B(£) :=
B(&,d(&, L)), using the mean-value property [22, p. 432] we get

(6.2) ' ()" < d=?/7 (¢, L){mes p(B(€))}"'?, p > 0.
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Using the Lemma 2.4 (see Note 2.1) and [3, Lemma 4] we have
(6.3) [P < d /(. L){mes BEOY/ ™ < a7 /(¢ 1),

From (6.1), (6.3) and using the [1, Lemma 3] we obtain

d
(64) lep(2) — (O] < /d" L)' (1)) |dt] ~ /d ), 1)

Vo0 - £’
T'(w,r) T(w,7)

If |€ + 1| > ces, then we get
pfl
(6.5) [op(2) = (O] < / (00— 1t [t] < [r — w] 7F* < |z — ¢|=e
I'(w,T)

by (3.1), and if |§ + 1| < ce3, then we also have

p=1 dt|
69 la@-w@l< [ T e E
T'(w,r)
/ < 1 >—Pp—ﬁ1(5+1) |dt|
=< In e
20 — [t| 20 — ||
I'(w,T)
-2 —A
4(111;) 4(111;) , )\::w,1>0
|7 —wl 2 = (| B
by (3.2), (6.4) and (6.3) complete the proof. O

Corollary 6.1. Let p > 1 and G € PQ(K,a,[3). Then, forallz€ L,( € G

lon(2) = @p(Q)] < |2 — ¢ )5,

Proof. From (6.1) and (6.3) we get

lon(2) — 2p(O)] < / 4 ¥ (e, 1) del.
I'(2,0)

Since G € PQ(K, «, 3), the domain G satisfies the conditions of Lemma 4.1. There-
fore,

clz—(|
/d—%<f,L>|da< / FEE - 2D el < / FA@) e < |z — ¢
['(2,0) I'(z,0) 0
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7. APPROXIMATION BY POLYNOMIALS IN THE Lp—NORM

Suppose that a domain G € PQ(K,a, ), « > 0, 5 > 0 is given. For the sake of
simplicity, but without loss of generality, we take the domain G as in the beginning
of Section 3.

Each L7, j = 1,2 is a Kj-quasiconformal arc. Let a;(.) be the quasiconformal
reflection across L7. Let us also set

. 2c1 +c¢
7= {z:x—l—ly: y="1"=2 2(x—1)1+a};

3
. c1+ 2c o
V2= {z:x—I—ly: y= 12 3 2(x—1)1Jr };
. 2c3 + ¢
v :a1{21’+1y: y:733 4( +1)1+B}
. c3 + 2¢
,}/g :a2{2’$+1y2 y%($+1)1+5},

where the constants c;, j = 1, 4 are those from the definition of the class PQ(K, v, 3).
It is easy to check from Lemma 2.3 that mes ’yj—((l, C2) <& — (o| for all (1,¢ € ’yj—,
ij=1,2.

Let 0 < € < 1 be small enough and R := 1+ en®~!. Let us choose points z;,
i,J = 1,2 such that they are in the intersection of Lg and v; and are the first such
points in Lk := {2 : 2 € Lg,Imz > 0} or L% := Lg\ L} (according to the motion on
Lg). These points divide Ly into four parts: L} := LL(z],2}) with the endpoints

4 :
21 and z3, L% = L%(23,27), LY, = L3 (21, 21), L} = Li(23,23), Lr :== U Ly
=1
v/(R) is a subarc of 4/ joining points +1 with 2/; T := 7I(R) U 13 (R) U Li;
U; o= int(T%, U L), i,j = 1,2.
We extend the function ¢, to U; U U in the following way

~ op(2), z €@,
(7.1) Pp(2) == { (ppoaj)(z) z€U;.
Then
(7.2) 5 () = { 0, L€ G,
(Ppa; ©@j)(2)jz, 2z €Uj.

From the Cauchy-Pompeiu formula [19, p. 148], we get

o) =g [ 2 L[ 200 ca

rLury U1UU2
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Then, using the above notations we obtain

(7.3)
1 @p (‘Di // 9017 C
= — ==d
wplz) = 27y, (—z C+z:2711/
v (R U1UU2
where

&p(C), C€LRULE,
Ip(Q) == q ¢p(1), Ce LR>
@P(_l)a CE Léll%
Lemma 7.1. Let p > 1 and assume that G € PQ(K,« ﬁ) for some K >
0 <ac< min{Z (1—%);%}, B8 < py = min{ —1; 2-1). } Then for any

p+2 ’p+2
n=3
(7.4) [ I Inton (lnn) %7, 1<p<2,
) ©p — T, =< ape
PP @) (Inn) for , p > 2.

Lemma 7.2. Let p > 1 and assume that G € PQ(K,0,[3) for some K > 1,
B < po. Then, for any n > 2 and arbitrary small € > 0

1—¢

(1 ) - B < mi K
— min - -
n ) p073K2+pK2+1 )
(75) H‘pp - Tt7z,p||L1(G) <
P 2—(p+2)B—c 2
(l P(1+5) (K7 +1) K -1 <B<p
n " O3K24pK24+1 0

Proof. The proofs of Lemmas 7.1, 7.2 are similar, we give them together. Since
the first term in the (7.3) is analytic in G, there is a polynomial P, (z) of degree not
exceeding n [23, p. 142] such that

1 fn(¢) / 1 —
2_ni/LR (CZ)ZdC—Pn(z)’ <., €@

(7.6)

So, from (7.3) we get

(7.7) [l — PTILHL;,(G)

<%+i / %@)(Efngg—l)’) // <<)>2

2,7=11l ; L,(G
,ylg(R) p(G) U,UU> Ly(G)

1 5
:E—F’;Jk
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Forallp>1and g <p—1,

(7.8) 185(0) — op(= D) = [0p(5 () — p(~D) < [C+ 177, ¢ € 7X(R),
(7.9)  185(0) = ep(D) = lop(s () —p(D) < [C =17, ¢ eV3(R),

from (2.1) and Corollary 6.1. Thus, for each o < min{2 (1 — %) ; %},ﬂ < pog we
obtain

2—(p+2)8

1
~ Y 2p
7.10 @p(Q) —ep(=1) o ntjal» €™, 1<p<2,
(7.10) V(R (C—2)2 ¢ 2-(pi2)g
7; (R) Lp(G) gj,l P ; P> 27
1 2-ap
~ olP 2p
711 (pp(C) - (Pp(]-) d |1n€]72‘ Ej,Z , 1<p<2,
(G 2 C—22 2op
7 (R) Ly(G) 45", p > 2,

from Corollary 5.1, 5.2, where ¢;; = mesq/]’:(R), 7,7 = 1,2. On the other hand,
according to [21, Lemma 9] we have

d(z;, L) <n~ ey

Then, from (2.1), (3.1) and (3.2) we get

2—¢
(7.12) Zjﬂ' =< |ij - (_1)1’ = "
(lnn)_aila i=2.

Thus, it follows from (7.10) and (7.11) that

> 2=(p+2)B—e
(7.13) / £0(Q) = ep(=1) 4 . (l) AR
7 (R) (€ —2)? L(G) n
ap=2
(7.14) / Md( < m(lnn) 2op - 1 <p<2
. ap—2
w2m ((—2)? e (Inn) %7 | b2,

Since the Hilbert transformation

10 =1 [[ Ls e
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is a bounded linear operator from L, into itself for p > 1, and

J[ |ez0f are~ [ 1o an

U1UU2 U1UU2
%Z// Q)] da¢<Zmesgp (o (U;)),
a(U)) =t

by (7.2) and (2.1), the Calderon-Zigmund inequality [7, p. 89] shows that

2
(7.15) Js < <Z mew(aj(Uj)))
j=1
For sufficiently large ¢ and small g9 < %, let us set:

. -1
Vi = {( ¢ € a;U;),|¢ -1 <e(lnn)™@ };
VQj :zozj(Uj)\Vlj7 j=1,2, a>0;

U, ={C: [C+1|<eo}; V0 =U;nU,, j=12 a=0.
Then, by Lemma 2.4, we obtain

mes p(V7) < (lnn)_‘fl;mes gp(aj(f/jl)) <nFl =%

mes (o (U; \ V}')) < n%7,
and

(lnn)_“%’ , a>0,
(7.16) Js <4 ey

npk?2 , o=
From (7.7), (7.13), (7,14) and (7.16) we get

ap—2
{Inlnn (Inn) Zap , a>0,1<p<2,
ap—2
(7.17) leh = Pall, () < { ()=, a>0,p>2,
’ e—2+(p+2)8 e—1
nrO+AEZE) 4 npr? o =0,p> 1

for arbitrary small € > 0. Now, if P,(z) := P,(2) — P,(0) + z[1 — P/(0)], then we
can easily see that (7.17) is also satisfied for P, (z) and P,(0) = 0, P.(0) = 1. Thus,
we can obtain the proof of Lemmas 7.1, 7.2 by considering the extremal property of
Tnp (%) O
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8. THE PROOF OF THEOREMS 1-6
We use the familiar method given in [4, 9, 24].

Lemma 8.1. Suppose that G is a Jordan domain and

{an} 1, {ﬁn} T, {'Yn = anﬁn} L, n—oo

are sequences such that the following is satisfied: if

||%0p - ﬂ-"vPHL}D(G) <Qn, m=23,...,

then
||Pn||C(G_)_<ﬁn||P7/L||LP(G)’ ’I’L:1,27...

for all polynomials P, (z) of degree not exceeding n with P, (0) = 0; and, in addition,
there exists a sequence of indices {ny},-; such that Bn,., < cBnys Ynpsr < EVns
Vk=1,2,... for somec>1,0<¢e < 1. Then

lep = mpllo@) <

The proof of this lemma is given similar to those of lemma 15 in [9]. Therefore, by
taking a,, from Lemmas 7.1, 7.2, 3, from Corollary 4.1 and, in addition, combining
this with G € PQ(K, a, 3) in the cases & = 0 or 8 = 0, we prove Theorems 1-6.

References

[1] F.G. Abdullayev: On the orthogonal polynomials in domains with quasiconformal
boundary. Dissertation, Donetsk (1986). (In Russian.)

[2] F.G. Abdullayev: On the convergence of Bieberbach polynomials in domains with inte-
rior zero angles. Dokl. Akad. Nauk. Ukrain. SSR, Ser. A 12 (1989), 3-5. (In Russian.)

[3] F.G. Abdullayev: On the convergence of Fourier series by orthogonal polynomials in
domains with piecevise-quasiconformal boundary. Theory of Mappings and Approxima-
tion. Naukova Dumka, Kiev, 1989, pp. 3-12.

[4] F.G. Abdullayev: Uniform convergence of the generalized Bieberbach polynomials in
regions with non zero angles. Acta Math. Hungar. 77 (1997), 223-246.

[5] F.G. Abdullayev and A. Baki: On the convergence of Bieberbach polynomials in domains
with interior zero angles. Complex Anal. Theor. & Appl. 3/ (2001).

[6] F.G. Abdullayev and A. Cavus: On the uniform convergence of the generalized Bieber-
bach polynomials in regions with quasiconformal boundary. To appear.

[7] L. V. Ahlfors: Lectures on Quasiconformal Mappings. Princeton, NJ: Van Nostrand,
1966.

[8] V. V. Andrievskii: Uniform convergence of Bieberbach polynomials in domains with zero
angles. Dokl. Akad. Nauk. Ukrain. SSR, Ser. A (1982), 3-5. (In Russian.)

659



[9]

[10]
(1]

[12]

V. V. Andrievskii: Uniform convergence of Bieberbach polynomials in domains with
piecewise quasiconformal boundary. Theory of Mappings and Approximation of Func-
tions. Kiev, Naukova Dumka, 1983, pp. 3-18. (In Russian.)

V. V. Andrievskii: Convergence of Bieberbach polynomials in domains with quasicon-
formal boundary. Trans. Ukrainian Math. J. 35 (1984), 233-236.

V. I. Belyi: Conformal mappings and the approximation of analytic functions in domains
with a quasiconformal boundary. Math. USSR-Sb. 31 (1977), 289-317.

V. I. Belyi and I. E. Pritsker: On the curved wedge condition and the continuity moduli
of conformal mapping. Ukrain. Mat. Zh. 45 (1993), 763-769.

P. J. Davis: Interpolation and Approximation. Blaisdell Publishing Company, 1963.

D. Gaier: On the convergence of the Bieberbach polynomials in regions with corners.
Constr. Approx. 4 (1988), 289-305.

D. Gaier: On the convergence of the Bieberbach polynomials in regions with piece-
wise-analytic boundary. Arch. Math. 58 (1992), 462-470.

D. M. Israfilov: On the approximation properties of extremal polynomials. Dep. VINITI,
No. 5461 (1981). (In Russian.)

M. V. Keldych: Sur ’approximation en moyenne quadratique des fonctions analytiques.
Math. Sb. 5(47) (1939), 391-401.

L V. Kulikov: Lyp-convergence of Bieberbach polynomials. Math. USSR-Izv. 15 (1980),
349-371.

O. Lehto and K. I. Virtanen: Quasiconformal mappings in the plane. Springer-Verlag,
Berlin, 1973.

S. N. Mergelyan: Certain questions of the constructive theory of functions. Trudy Math.
Inst. Steklov 37 (1951). (In Russian.)

Ch. Pommerenke: Univalent Functions. Géttingen, 1975.

1. I. Privalov: Introduction to the theory of functions of a complex variable. Nauka,
Moscow, 1984.

V. I. Smirnov and N. A. Lebedev: Functions of a Complex Variable. Constructive Theory.
The M.I.T. PRESS, 1968.

1. B. Simonenko: On the convergence of Bieberbach polynomials in the case of a Lipshitz
domain. Math. USSR-Izv. 13 (1980), 166-174.

P. K. Suetin: Polynomials orthogonal over a region and Bieberbach polynomials. Proc.
Steklov Inst. Math. 100 (1971). Providence, Rhode Island: Amer. Math. Soc., 1974.

P. M. Tamrazov: Smoothness and Polynomial Approximation. Naukova Dumka, Kiev,
1975. (In Russian.)

A. Torchincky: Real variables. Calif. Addison-Wesley, 1988.

J. L. Walsh: Interpolation and approximation by rational functions in the complex do-
main. Moscow, 1961. (In Russian.)

Wu Xue-Mou: On Bieberbach polynomials. Acta Math. Sinica 18 (1963), 145-151.

Awuthor’s address: Mersin University, Faculty of Arts and Science, Department of Math-

ematics, 33342 Mersin, Turkey e-mail: f.g.abdullayev@usa.net, fabdul@mersin.edu.tr.

660



		webmaster@dml.cz
	2020-07-03T13:15:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




