Article
Keywords:
lattice-ordered module; value set
Summary:
In an $\ell $-group $M$ with an appropriate operator set $\Omega $ it is shown that the $\Omega $-value set $\Gamma _{\Omega }(M)$ can be embedded in the value set $\Gamma (M)$. This embedding is an isomorphism if and only if each convex $\ell $-subgroup is an $\Omega $-subgroup. If $\Gamma (M)$ has a.c.c. and $M$ is either representable or finitely valued, then the two value sets are identical. More generally, these results hold for two related operator sets $\Omega _1$ and $\Omega _2$ and the corresponding $\Omega $-value sets $\Gamma _{\Omega _1}(M)$ and $\Gamma _{\Omega _2}(M)$. If $R$ is a unital $\ell $-ring, then each unital $\ell $-module over $R$ is an $f$-module and has $\Gamma (M) = \Gamma _R(M)$ exactly when $R$ is an $f$-ring in which $1$ is a strong order unit.
References:
[1] M. Anderson and T. Feil:
Lattice-Ordered Groups. D. Reidel, Dordrecht, 1988.
MR 0937703
[2] A. Bigard and K. Keimel:
Sur les endomorphismes conservant les polaires d’ un groupe réticulé archimédien. Bull. Soc. Math. France 97 (1970), 81–96.
MR 0262137
[3] A. Bigard, K. Keimel, S. Wolfenstein:
Groupes Et Anneaux Réticulés. Springer-Verlag, Berlin, 1977.
MR 0552653
[4] G. Birkhoff and R. S. Pierce:
Lattice-ordered rings. Am. Acad. Brasil. Ci. 28 (1956), 41–69.
MR 0080099
[5] P. Conrad:
The lattice of all convex $\ell $-subgroups of a lattice-ordered group. Czechoslovak Math. J. 15 (1965), 101–123.
MR 0173716
[6] P. Conrad:
Lattice-Ordered Groups. Tulane Lecture Notes, New Orleans, 1970.
Zbl 0258.06011
[7] P. Conrad and J. Diem:
The ring of polar preserving endomorphisms of an abelian lattice-ordered group. Illinois J. Math. 15 (1971), 222–240.
DOI 10.1215/ijm/1256052710 |
MR 0285462