Previous |  Up |  Next

Article

Title: The Denjoy extension of the Riemann and McShane integrals (English)
Author: Park, Jae Myung
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 3
Year: 2000
Pages: 615-625
Summary lang: English
.
Category: math
.
Summary: In this paper we study the Denjoy-Riemann and Denjoy-McShane integrals of functions mapping an interval $\left[ a,b\right] $ into a Banach space $X.$ It is shown that a Denjoy-Bochner integrable function on $ \left[ a,b\right] $ is Denjoy-Riemann integrable on $\left[ a,b\right] $, that a Denjoy-Riemann integrable function on $\left[ a,b\right] $ is Denjoy-McShane integrable on $\left[ a,b\right] $ and that a Denjoy-McShane integrable function on $\left[ a,b\right] $ is Denjoy-Pettis integrable on $\left[ a,b\right].$ In addition, it is shown that for spaces that do not contain a copy of $c_{0}$, a measurable Denjoy-McShane integrable function on $\left[ a,b\right] $ is McShane integrable on some subinterval of $\left[ a,b\right].$ Some examples of functions that are integrable in one sense but not another are included. (English)
MSC: 26A42
MSC: 28A25
MSC: 28A50
MSC: 28B05
idZBL: Zbl 1079.28502
idMR: MR1777481
.
Date available: 2009-09-24T10:36:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127597
.
Reference: [1] J. Diestel, J. J. Uhl: Vector Measures.Amer. Math. Soc., Providence, R. I., 1977. MR 0453964
Reference: [2] D. H. Fremlin: The Henstock and McShane integrals of vector-valued functions.Illinois J. Math. 38 (1994), 471–479. Zbl 0797.28006, MR 1269699, 10.1215/ijm/1255986726
Reference: [3] D. H. Fremlin, J. Mendoza: On the integration of vector-valued functions.Illinois J. Math. 38 (1994), 127–147. MR 1245838, 10.1215/ijm/1255986891
Reference: [4] R. A. Gordon: The Denjoy extension of the Bochner, Pettis, and Dunford integrals.Studia Math. 92 (1989), 73–91. Zbl 0681.28006, MR 0984851, 10.4064/sm-92-1-73-91
Reference: [5] R. A. Gordon: The McShane integral of Banach-valued functions.Illinois J. Math. 34 (1990), 557–567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170
Reference: [6] R. A. Gordon: Riemann integration in Banach spaces.Rocky Mountain J. Math. 21 (1991), 923–949. Zbl 0764.28008, MR 1138145, 10.1216/rmjm/1181072923
Reference: [7] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Amer. Math. Soc., 1994. Zbl 0807.26004, MR 1288751
Reference: [8] R. A. Gordon: Differentiation in Banach spaces.preprint.
Reference: [9] J. M. Park: Bounded convergence theorem and integral operator for operator valued measures.Czechoslovak Math. J. 47(122) (1997), 425–430. Zbl 0903.46040, MR 1461422, 10.1023/A:1022403232211
Reference: [10] B. J. Pettis: Differentiation in Banach spaces.Duke Math. J. 5 (1939), 254–269. Zbl 0021.32602, MR 1546122, 10.1215/S0012-7094-39-00523-5
.

Files

Files Size Format View
CzechMathJ_50-2000-3_14.pdf 348.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo