Previous |  Up |  Next

Article

Keywords:
quasi-divisor theory; divisor class group
Summary:
A method is presented making it possible to construct $po$-groups with a strong theory of quasi-divisors of finite character and with some prescribed properties as subgroups of restricted Hahn groups $H(\Delta ,\mathbb{Z})$, where $\Delta $ are finitely atomic root systems. Some examples of these constructions are presented.
References:
[1] Anderson, M., Feil, T.: Lattice-ordered Groups. D. Reidl Publ. Co., Dordrecht, Tokyo, 1988. MR 0937703
[2] Aubert, K.E.: Divisors of finite character. Annali di matem. pura ed appl. 33 (1983), 327–361. MR 0725032 | Zbl 0533.20034
[3] Aubert, K.E.: Localizations dans les systémes d’idéaux. C.R.Acad. Sci. Paris 272 (1971), 465–468. MR 0277511
[4] Borevich, Z. I. and Shafarevich, I. R.: Number Theory. Academic Press, New York, 1966. MR 0195803
[5] Conrad, P.: Lattice Ordered Groups. Tulane University, 1970. Zbl 0258.06011
[6] Chouinard, L. G.: Krull semigroups and divisor class group. Canad. J. Math. 33 (1981), 1459–1468. DOI 10.4153/CJM-1981-112-x | MR 0645239
[7] Geroldinger, A., Močkoř, J.: Quasi-divisor theories and generalizations of Krull domains. J. Pure Appl. Algebra 102 (1995), 289–311. DOI 10.1016/0022-4049(94)00088-Z | MR 1354993
[8] Gilmer, R.: Multiplicative Ideal Theory. M. Dekker, Inc., New York, 1972. MR 0427289 | Zbl 0248.13001
[9] Griffin, M.: Rings of Krull type. J. Reine Angew. Math. 229 (1968), 1–27. MR 0220726 | Zbl 0173.03504
[10] Griffin, M.: Some results on v-multiplication rings. Canad. J. Math. 19 (1967), 710–722. DOI 10.4153/CJM-1967-065-8 | MR 0215830 | Zbl 0148.26701
[11] Jaffard, P.: Les systémes d’idéaux. Dunod, Paris, 1960. MR 0114810 | Zbl 0101.27502
[12] Močkoř, J.: Groups of Divisibility. D. Reidl Publ. Co., Dordrecht, 1983. MR 0720862
[13] Močkoř, J., Alajbegovic, J.: Approximation Theorems in Commutative Algebra. Kluwer Academic publ., Dordrecht, 1992. MR 1207134
[14] Močkoř, J.,Kontolatou, A.: Groups with quasi-divisor theory. Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23–36. MR 1223185
[15] Močkoř, J.,Kontolatou, A.: Divisor class groups of ordered subgroups. Acta Math. Inform. Univ. Ostraviensis 1 (1993). MR 1250925
[16] Močkoř, J., Kontolatou, A.: Quasi-divisors theory of partly ordered groups. Grazer Math. Ber. 318 (1992), 81–98. MR 1227404
[17] Močkoř, J.: $t$-Valuation and theory of quasi-divisors. To appear in J. Pure Appl. Algebra. MR 1466097
[18] Močkoř, J., Kontolatou, A.: Some remarks on Lorezen $r$-group of partly ordered group. Czechoslovak Math. J. 46(121) (1996), 537–552. MR 1408304
[19] Močkoř, J.: Divisor class group and the theory of quasi-divisors. To appear. MR 1765996
[20] Ohm, J.: Semi-valuations and groups of divisibility. Canad. J. Math. 21 (1969), 576–591. DOI 10.4153/CJM-1969-065-9 | MR 0242819 | Zbl 0177.06501
[21] Skula, L.: Divisorentheorie einer Halbgruppe. Math. Z. 114 (1970), 113–120. MR 0262401 | Zbl 0177.03202
[22] Skula, L.: On $c$-semigroups. Acta Arith. 31 (1976), 247–257. DOI 10.4064/aa-31-3-247-257 | MR 0444817 | Zbl 0303.13014
Partner of
EuDML logo