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CONSTRUCTION OF po-GROUPS WITH QUASI-DIVISORS THEORY
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Abstract. A method is presented making it possible to construct po-groups with a strong
theory of quasi-divisors of finite character and with some prescribed properties as sub-
groups of restricted Hahn groups H(∆,�), where ∆ are finitely atomic root systems. Some
examples of these constructions are presented.
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1. Introduction

In the algebraic number theory the notion of a theory of divisors was introduced by
Borevic and Shafarevic [4] as a map h from the group of divisibility G of an integral

domain A into a free abelian group �(P ) (considered as an l-group with pointwise
ordering) satisfying some conditions. It is wellknown (see [4]) that a divisibility group

of a domain A admits a theory of divisors if and only if A is a Krull domain.
L. Skula [21] introduced a notion of a theory of divisors for a partly ordered group

(po-group) (or, equivalently, for a semigroup with a cancellation law) as a very natural
generalization of a theory of divisors for rings, and he derived an extensive theory of

these po-groups.
A step towards a further generalization was done by K.E. Aubert in [2], where

for the first time the notion of a quasi-divisors theory was introduced. Recall that a
directed po-group (G, .) has a theory of quasi-divisors if there exists an l-group (Γ, .)

and a map h : G −−→ Γ such that
(i) h is an order isomorphism from G into Γ;
(ii) (∀α ∈ Γ+)(∃g1, . . . , gn ∈ G+)α = h(g1) ∧ . . . ∧ h(gn).
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The principal tool for the investigation of these properties in po-groups seems to

be the notion of an r-ideal. We recall here that by an r-system of ideals in a directed
po-group G we mean a map X �→ Xr (Xr is called an r-ideal) from the set of all
lower bounded subsets X of G into the power set of G which satisfies the following

conditions:

(1) X ⊆ Xr;
(2) X ⊆ Yr =⇒ Xr ⊆ Yr;

(3) {a}r = a ·G+ = (a) for all a ∈ G;
(4) a ·Xr = (a ·X)r for all a ∈ G.
One of the first characterizations of po-groups with a theory of quasi-divisors was

done by P. Jaffard [11]. He proved that a directed po-group G has a theory of quasi-
divisors if and only if the semigroup (I(f)t ,×) of finitely generated t-ideals is a group,
i.e. if and only if G is a t-Prüfer group. (For a comprehensive description see e.g. [2].)
In [14] we introduced a stronger version of po-groups with a theory of quasi-

divisors. Recall that a theory of quasi-divisors h : G −−→ Γ is called a strong theory
of quasi-divisors, if

(∀α, β ∈ Γ+)(∃γ ∈ Γ+)α · γ ∈ h(G), β ∧ γ = 1.

It may be proved that any strong theory of quasi-divisors is a theory of quasi-divisors

as well.
Moreover, in a classical divisor theory of po-groups an important role is played

by a divisor class group. This notion was introduced by L. Skula [21] as a natural

generalization of a class group known from the theory of Krull domains. This notion
can be defined naturally for any o-isomorphism h : G −−→ Γ of a po-group G into
another po-group Γ. Such a definition was introduced in [15] and let us recall that a
divisor class group Ch of h is then the abstract group Γ/h(G). The canonical map
Γ −−→ Ch is then denoted by ϕh.
It was again L. Skula who showed that Ch and ϕh have great importance when

deciding whether or not h is a theory od divisors. We proved (see [19], [16]) that
the divisor class group is of the same importance also for po-groups with a theory

of quasi-divisors as it is for groups with the classical divisors theory. Namely, we
proved that by using some properties of Ch it is possible to characterize po-groups G
with the strong theory of quasi-divisors of a finite character (see [16; Theorem 3.3],
[19; Theorem 2.1]).

In this paper we present a general method which enables us to construct examples
of po-groups with a strong theory of quasi-divisors of a finite character with some

prescribed properties. Using this method we present several examples of po-groups
with a quasi-divisors theory with some prescribed properties.
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2. Examples generating

In [16]; Theorem 3.3, we proved the following theorem characterizing po-groups

with a theory of quasi-divisors with a finitely atomic value group Γ. Recall that an
l-group Γ is finitely atomic, if for any element α ∈ Γ, α > 1, the set of all atoms

σ ∈ Γ+ such that σ � α is nonempty and finite. A trivial example of a finitely
atomic l-group is the group �(P ).

Theorem 1 ([16]; 3.3). Let h be an o-isomorphism from a directed po-group
G into an l-group Γ, let Ch be a divisor class group of h and let ϕ : Γ −−→ Ch be a
canonical map. Let us consider the following statements:

(1) h is a strong theory of quasi-divisors.

(2) If α1, . . . , αn are elements of Γ such that αi > 1 for all i, then ϕ(Γ+ \
{α1, . . . , αn}t) = Ch, where {α1, . . . , αn}t = {α ∈ Γ: ∃1�i�ni, α � αi}.

(3) If α1, . . . , αn are atoms in Γ+, then ϕ(Γ+ \ {α1, . . . , αn}t) = Ch.
Then (1) =⇒ (2) =⇒ (3). If Γ is finitely atomic, then all the statements are equiva-
lent.

A method for constructing examples of po-groups with a strong theory of quasi-
divisors of a finite character that we will present here is based on an application of

Theorem 1 for a special l-group, the restricted Hahn group H(∆,�).

Recall that if ∆ is a root system (i.e. (∆,�) is a partly ordered set for which
{α ∈ ∆: α � γ} is totally ordered for any γ ∈ ∆), then the restricted Hahn group
H(∆,�) on ∆ is the group �(∆) ordered in the following way:

a ∈ H(∆,�), a� 0⇔ aα > 0 for all α ∈ ms(a),

where ms(a) is the maximal support of a, i.e. the set of all maximal elements in
supp(a) = {α ∈ ∆: aα 
= 0}. Then H(∆,�) is an l-group (see e.g. [1]).
Now, let ∆0 be the set of all minimal elements of ∆. We say that ∆ is atomic if

for any element α ∈ ∆ there exists β ∈ ∆0 such that α � β. Moreover, we say that

∆ is finitely atomic if for any α ∈ ∆, the set {σ ∈ ∆0 : σ � α} is nonempty and
finite. Finally, let α ∈ ∆. Then by aα we denote the element of H(∆,�) such that

aαβ =

{
1 if β = α,

0 otherwise.

In the following lemma we recall some properties of H(∆,�) which can be of
interest for our examples of groups with a strong theory of quasi-divisors.
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Lemma 2 ([16]; 3.4). Let ∆ be a root system.

(1) Let α ∈ ∆0, b ∈ H(∆,�)+. Then b � aα if and only if there exists β ∈ ms(b)
such that β � α.

(2) If ∆ is atomic, then a ∈ H(∆,�) is an atom if and only if a = aα for some

α ∈ ∆0.
(3) If ∆ is finitely atomic, then H(∆,�) is finitely atomic.

Our examples of groups with a strong theory of quasi-divisors will be based on the

application of Theorem 1 and Lemma 2 to a group H(∆,�). Hence, we will investi-
gate homomorphisms ϕ of H(∆,�) into an abelian group C. We will be interested in
homomorphisms ϕ which are determined by maps ϕ : ∆ −−→ C in the following way.
We say that a homomorphism ψ : H(∆,�) −−→ C is determined by a map ϕ :

∆ −−→ C if for any a ∈ H(∆,�) we have

ψ(a) =
∑

α∈∆
ϕ(α)aα.

In this case the following diagram commutes:

∆
ϕ−−−−→ C

nat

�
∥∥∥

H(∆,�)
ψ−−−−→ C

where nat(α) = aα. The homomorphism ψ will be then denoted by ϕ.

Corollary (Examples generating method). Let (∆,�) be a finitely atomic
root system, C an abelian group and let ϕ : ∆ −−→ C be a map such that for any
finite set {α1, . . . , αn} of atoms in ∆ the set ϕ(∆ \ {α1, . . . , αn}t) is a semigroup
generator of C, where {α1, . . . , αn}t = {α ∈ ∆: ∃i, α � αi}. Then in the diagram

Kerϕ
h−−−→ H(∆,�)

ϕ−−−→ C,

the inclusion map h is a strong theory of quasi-divisors of a finite character and C is
a divisor class group of h.

�����. Since ∆ is finitely atomic, according to Lemma 2, the l-groupH(∆,�) is

finitely atomic. Let {a1, . . . , an} be a finite set of atoms in H(∆,�). Then according
to Lemma 2, for any i, 1 � i � n, there exists an atom αi ∈ ∆ such that ai =
aαi . Let a ∈ C. Since ϕ(∆ \ {α1, . . . , αn}t) is a semigroup generator of C, there
exist β1, . . . , βm ∈ ∆ \ {α1, . . . , αn}t and natural numbers k1, . . . , km such that a =
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m∑
j=1

ϕ(βj)kj . If aβjkj � ai = aαi for some i, then we have βj � αi according to

Lemma 2, a contradiction. Hence b =
m∑
j=1

aβjkj ∈ H(∆,�)+ \ {a1, . . . , an}t and

ϕ(b) =
∑

α∈∆
ϕ(α) · bα =

m∑

j=1

ϕ(βj)kj = a.

We will show that Kerϕ = G is a directed po-group. Let a ∈ G. We put

b(α) =





a(α) if α ∈ ms(a), a(α) > 0,
0 if α ∈ ms(a), a(α) < 0,
|a(α)| if α ∈ supp(a) \ ms(a),
0 otherwise.

Then b � a, 0 in H(∆,�), since (b − a)(α) > 0 for all α ∈ ms(b − a). Let a =∑
α∈supp(b)

b(α) · ϕ(α) and let

Φb = {α ∈ ∆: α is an atom in ∆, α � β for some β ∈ supp(b)}.

Then Φb is a finite set in ∆ and ϕ(∆ \ Φbt) is a semigroup generator of C. Hence,
there exist β1, . . . , βn ∈ ∆ \ Φbt and positive numbers c1, . . . , cn ∈ � such that −a =
ϕ(β1)c1 + . . .+ ϕ(βn)cn. Then βi 
∈ supp(b) for any i and we put

c(α) =





b(α) if α ∈ supp(b, )
ci if α = βi, i = 1, . . . , n,

0 otherwise.

Then c > 0 in H(∆,�) and c � b � a. Moreover,

∑

α∈∆
c(α)ϕ(α) =

∑

α∈supp(b)
b(α)ϕ(α) +

n∑

i=1

ciϕ(βi) = 0.

Hence, c ∈ G and since G is a convex subgroup, we obtain that b ∈ G and G is

directed.

Now, according to [17]; 2.2, Γ satisfies Conrad’s (F)-condition and it follows that
h is of finite character. The result then follows from Theorem 1. �
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Corollary (Skula, L. [21]). Let G be a po-group and let h : G −−→ �
(P ) be an

o-isomorphism into. Then the following conditions are equivalent.

(1) h is a strong theory of divisors.

(2) For p1, . . . , pn ∈ P (n � 1), the set ϕh(P \ {p1, . . . , pn}) is a semigroup
generator of a divisor class group �(P )/h(G).

We investigate first some additional properties of the inclusion h : G = Kerϕ −−→
Γ = H(∆,�). In what follows we will always assume that ∆ is a finitely atomic root

system.

Let ∆0 be the set of all atoms in ∆. Then ∆0 is the maximal disjoint set in ∆

and it follows that {nat(α) : α ∈ ∆0} is a base of Γ. Moreover, the set of polars of
nat(α), α ∈ ∆0, then defines an l-realization of Γ, i.e. if we put

∆+α = (nat(α)
′)+ = {g ∈ Γ+ : g ∧ nat(α) = 0}

for α ∈ ∆0 then since Γ satisfies the Conrad (F)-condition (see [17]; 2,2), the set

W = {wα : Γ wα−−−−→ Γ/∆α is a canonical l-homomorphism, α ∈ ∆0}

is a defining family of a finite character of Γ (see [5]; p. 3.29). Moreover, for any
α ∈ ∆0 we have

∆+α = {g ∈ Γ+ : supp(g) ∩ (α)t = ∅}
= {g ∈ Γ+ : g(β) = 0 for all β ∈ ∆, β � α}

according to [16]; 3.4.

In the following proposition we present some properties of this defining family W .

Proposition 3. Let W be a defining family of Γ introduced above.

(1) W is an independent defininig family if and only if for all α, β ∈ ∆0, α 
= β,

(α)t ∩ (β)t = ∅ holds.
(2) If α ∈ ∆0 is such that α < β for some β ∈ ∆, then Γ/∆α is not isomorphic
to �.

�����. (1). Let W be independent and let us assume that there are α 
= β

in W such that γ � α, β for some γ. Let g = nat(γ) ∈ Γ. Then g 
∈ ∆α ∪ ∆β . If
g ∈ [∆α,∆β ], then there exist a ∈ ∆α, b ∈ ∆β such that a + b � g. But in this
case a(γ) = b(γ) = 0 and it follows that γ ∈ ms((a + b) − g). Hence, a + b 
� g, a

202



contradiction. Conversely, let (α)t ∩ (β)t = ∅ for all α 
= β ∈ ∆0. Let g ∈ Γ+ and
α 
= β ∈ ∆0. We put

a(γ) =

{
0 γ � α,

g(γ) γ 
� α,

b(γ) =

{
0 γ � β,

g(γ) γ 
� β.

Then a ∈ ∆α, b ∈ ∆β and it follows from (α)t ∩ (β)t = ∅ that γ ∈ ms((a + b) − g)

iff γ ∈ ms(g). Hence, a+ b > g and [∆α,∆β ] = G.
(2) Let a, b, cn; n = 1, 2, . . . be defined such that

a(γ) = 2 if γ = β,

b(γ) = 1 if γ = β,

cn(γ) = 2 if γ = β,

cn(γ) = −n, if γ = α,
a(γ) = b(γ) = cn(γ) = 0 otherwise.

Then
a+∆α > c1 +∆α > c2 +∆α > . . . > b+∆α > ∆α.

Hence, Γ/∆α cannot be order isomorphic to �. �

Example 1. For any infinite cardinal number a there exists a po-group G with
a strong theory of quasi-divisors of a finite character such that G+ has at least a
maximal prime t-ideals.

In fact, let ∆ be a set with cardinality a. Let ∆ be considered to be an antichain.
Let ∆ = ∆1 ∪∆2 be a partition such that any ∆i is infinite and let us define a map
ϕ : ∆ −−→ Z such that

ϕ(δ) =

{
1 if δ ∈ ∆1,
−1 if δ ∈ ∆2.

Hence, according to the first Corollary, G = ker(ϕ)
h−−−→ Γ = H(∆,�) is a po-group

with a strong theory of quasi-divisors of a finite character. Moreover, since ∆ is a
set of all atoms in (∆,�), then for any δ ∈ ∆, ∆δ = {g ∈ Γ: gβ = 0, ∀β � δ} is a
minimal prime l-ideal in Γ. Hence, acording to [14]; Prop. 2.4, Pδ = Γ+ \ ∆δ is a
maximal prime t-ideal in Γ. Since an embedding h is a (t, t)-morphism, it follows that

Qδ = h−1(Pδ) is a prime t-ideal in G as well. Moreover, Qδ is maximal. In fact, if Q
is a prime t-ideal in G such that Qδ ⊂ Q then since G is a t-Prüfer po-group (see [17];
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Theorem 2.1, for example), a canonical map wQ : G −−→ G/H is a t-valuation, where

H is the quotient group of a semigroup G+ \Q. Let ŵQ be an extension of wQ onto a
t-valuation of Γ. The existence of this extension follows from the universal property
of Γ (see [2], e.g.). Then Γ+ \ ker(ŵQ) is a prime t-ideal strictly containing Pδ, a
contradiction. Hence, {Qδ : δ ∈ ∆} is a set of maximal prime t-ideals of G.
Our next two examples will concern G-dense l-ideals of Γ. Recall that an l-ideal

∆ of Γ is called G-dense (with respect to an o-isomorphism h from G into Γ) if for

any α ∈ ∆ there exists g ∈ G such that α � h(g) ∈ ∆. In [18]; 3.3, it was proved
that there exists a bijection between the set of o-ideals of a (t-closed) po-group G

and the set of G-dense l-ideals of its Lorenzen l-group Λt(G). In the first example
we show that even in the case that an inclusion G −−→ Λt(G) is a strong theory of
quasi-divisors of a finite character, in Λt(G) there exist (in general) l-ideals which

are not G-dense.

Example 2. There exists a po-group G with a strong theory of quasi-divisors
of a finite character h : G −−→ Γ such that in Γ there exists an l-ideal which is not
G-dense.

In fact, let A be an infinite finitely atomic root system as in Fig. 1. We define a

map ϕ : A −−→ � such that

ϕ(αi) = (−1)i; ϕ(αij) = 0.

a1 a2

a12

�
a3 a4

a34

� . . .

Fig. 1

Then for any finite set F of atoms from A, ϕ(A \ Ft) is a semigroup generator of
� and according to Corollary, G = Kerϕ

h=id−−−−−→ Γ = H(A,�) is a strong theory of
quasi-divisors of a finite character with � as a divisor class group.

We set

∆ =
⋂

i odd

∆αi = {g ∈ Γ: g(β) = 0, for all β � αi, i odd}
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where ∆αi is a polar of nat(αi). Then ∆ is an l-ideal of Γ. Let a = nat(α2) ∈ Γ.
Then a ∈ ∆. Now, if ∆ is G-dense, there exists g ∈ G such that g � a, g ∈ ∆. Hence,
g(αi) = 0 = g(αi,i+1) for all i odd. Since g ∈ G we then have 0 =

∑
i

g(αi)(−1)i =
∑

i even
g(αi). If g(α2) < 1, then α2 ∈ ms(g − a) and (g − a)(α2) < 0, a contradiction.

Hence, g(α2) � 1 and there exists another i such that g(αi) < 0. But then i ∈ms(g)
and g 
� 0, a contradiction. Therefore, ∆ is not G-dense.
In [18]; 3.5, it was proved that any intersection of finitely many prime l-ideals of Γ

is G-dense. In Example 2 it was shown that there exists an intersection of infinitely

many prime l-ideals from a base of Γ which is not G-dense. In the next example we
show that this is not a typical case.

Example 3. There exists a po-group G with a strong theory of quasi-divisors

of a finite character h : G −−→ Γ such that any intersection of infinitely many prime
l-ideals from a base of Γ is G-dense.

In fact, let A be an infinite finitely atomic root system as in Fig. 2. We define a

map ϕ : A −−→ � such that

ϕ(αi) = ϕ(αi) = (−1)i; i = 1, 2, . . . .

Then for any finite set F of atoms from A, ϕ(A \ Ft) is a semigroup generator of �
and according to Corollary, G = Kerϕ

h=id−−−−−→ Γ = H(A,�) is a strong theory of

quasi-divisors of a finite character.

a1

a1

�
a2

a2

� . . .

Fig. 2

Then {∆αi : i = 1, 2, . . .} is a base of Γ, where ∆α = {g ∈ Γ: g(β) = 0, β ∈ A, β �
α}. Let B ⊆ {α1, . . .} be an arbitrary infinite set and let ∆ =

⋂
β∈B
∆β . Let a ∈ ∆+

be arbitrary, i.e. a(α) = a(α) = 0 for any α ∈ B. We define an element g ∈ Γ such
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that

g(α) =





0 if α ∈ B,
a(α) + 1 if a(α) 
= 0,
1 if a(α) = 0, a(α) 
= 0,
0 if a(α) = a(α) = 0,

g(α) = −g(α).

Then
∑
i

(g(αi) + g(αi))(−1)i = 0 and g ∈ G. Moreover, g ∈ ∆ and g � a. Hence, ∆

is G-dense.

References

[1] Anderson, M., Feil, T.: Lattice-ordered Groups. D. Reidl Publ. Co., Dordrecht, Tokyo,
1988.

[2] Aubert, K.E.: Divisors of finite character. Annali di matem. pura ed appl. 33 (1983),
327–361.

[3] Aubert, K.E.: Localizations dans les systémes d’idéaux. C.R.Acad. Sci. Paris 272 (1971),
465–468.

[4] Borevich, Z. I. and Shafarevich, I. R.: Number Theory. Academic Press, New York,
1966.

[5] Conrad, P.: Lattice Ordered Groups. Tulane University, 1970.
[6] Chouinard, L. G.: Krull semigroups and divisor class group. Canad. J. Math. 33 (1981),
1459–1468.

[7] Geroldinger, A., Močkoř, J.: Quasi-divisor theories and generalizations of Krull do-
mains. J. Pure Appl. Algebra 102 (1995), 289–311.

[8] Gilmer, R.: Multiplicative Ideal Theory. M. Dekker, Inc., New York, 1972.
[9] Griffin, M.: Rings of Krull type. J. Reine Angew. Math. 229 (1968), 1–27.
[10] Griffin, M.: Some results on v-multiplication rings. Canad. J. Math. 19 (1967), 710–722.
[11] Jaffard, P.: Les systémes d’idéaux. Dunod, Paris, 1960.
[12] Močkoř, J.: Groups of Divisibility. D. Reidl Publ. Co., Dordrecht, 1983.
[13] Močkoř, J., Alajbegovic, J.: Approximation Theorems in Commutative Algebra. Kluwer

Academic publ., Dordrecht, 1992.
[14] Močkoř, J.,Kontolatou, A.: Groups with quasi-divisor theory. Comm. Math. Univ. St.

Pauli, Tokyo 42 (1993), 23–36.
[15] Močkoř, J.,Kontolatou, A.: Divisor class groups of ordered subgroups. Acta Math. In-

form. Univ. Ostraviensis 1 (1993).
[16] Močkoř, J., Kontolatou, A.: Quasi-divisors theory of partly ordered groups. Grazer

Math. Ber. 318 (1992), 81–98.
[17] Močkoř, J.: t-Valuation and theory of quasi-divisors,. To appear in J. Pure Appl. Alge-

bra.
[18] Močkoř, J., Kontolatou, A.: Some remarks on Lorezen r-group of partly ordered group,.

Czechoslovak Math. J. 46(121) (1996), 537–552.
[19] Močkoř, J.: Divisor class group and the theory of quasi-divisors. To appear.
[20] Ohm, J.: Semi-valuations and groups of divisibility. Canad. J. Math. 21 (1969), 576–591.
[21] Skula, L.: Divisorentheorie einer Halbgruppe. Math. Z. 114 (1970), 113–120.

206



[22] Skula, L.: On c-semigroups. Acta Arith. 31 (1976), 247–257.

Author’s address: Department of Mathematics, University of Ostrava, CZ-702 00 Os-
trava, e-mail: Jiri.Mockor@osu.cz.

207


		webmaster@dml.cz
	2020-07-03T12:31:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




