Previous |  Up |  Next

Article

Keywords:
nonexpansive type mapping; asymptotically regular mapping; fixed point.
Summary:
In this paper a new class of self-mappings on metric spaces, which satisfy the nonexpensive type condition (3) below is introduced and investigated. The main result is that such mappings have a unique fixed point. Also, a remetrization theorem, which is converse to Banach contraction principle is given.
References:
[1] J. Bogin: A generalization of a fixed point theorem of Goebel, Kirk and Shimi. Canad. Math. Bull 19 (1976), 7–12. DOI 10.4153/CMB-1976-002-7 | MR 0417866 | Zbl 0329.47021
[2] S.K. Chatterjea: Applications of an extension of a theorem of Fisher on common fixed point. Pure Math. Manuscript 6 (1987), 35–38. MR 0981322 | Zbl 0664.54029
[3] Lj. B. Ćirić: On a common fixed point theorem of a Greguš type. Publ. Inst. Math. (Beograd) (N.S.) 49 (63) (1991), 174–178. MR 1127395
[4] Lj. B. Ćirić: On some discontinuous fixed point mappings in convex metric spaces. Czechoslovak Math. J. 43 (118) (1993), 319–326. MR 1211753
[5] Lj. B. Ćirić: On Diviccaro, Fisher and Sessa open questions. Arch. Math. (Brno) 29 (1993), 145–152. MR 1263115
[6] Lj. B. Ćirić: Nonexpansive type mappings and fixed point theorems in convex metric spaces. Rend. Accad. Naz. Sci. XL Mem. Mat. (5), Vol. XIX (1995), 263–271.
[7] Lj. B. Ćirić: On some nonexpansive type mappings and fixed points. Indian J. Pure Appl. Math. 24 (3) (1993), 145–149. MR 1210385
[8] Lj. B. Ćirić: On same mappings in metric space and fixed points. Acad. Roy. Belg. Bull. Cl. Sci. (5) T.VI (1995), 81–89. MR 1385507
[9] D. Delbosco, O. Ferrero and F. Rossati: Teoremi di punto fisso per applicazioni negli spazi di Banach. Boll. Un. Mat. Ital. A. (6) 2 (1993), 297–303. MR 0724481
[10] M. L. Diviccaro, B. Fisher and S. Sessa: A common fixed point theorem of Greguš type. Publ. Math. (Debrecen) 34 (1987), 83–89. MR 0901008
[11] Sh. T. Dzhabbarov: A generalized contraction mapping principle and infinite systems of differential equations. Differentsialnye Uravneniya 26 (1990), no. 8, 1299–1309, 1467 (in Russian). MR 1074257
[12] B. Fisher: Common fixed points on a Banach space. Chung Yuan J. 11 (1982), 19–26.
[13] B. Fisher and S. Sessa: On a fixed point theorem of Greguš. Internat. J. Math. Sci. 9 (1986), 23–28. DOI 10.1155/S0161171286000030 | MR 0837098
[14] M. Greguš: A fixed point theorem in Banach spaces. Boll. Un. Mat. Ital. A (5) 17 (1980), 193–198.
[15] K. Iseki: On common fixed point theorems of mappings. Proc. Japan Acad. Ser. A Math. Sci. 50 (1974), 408–409. MR 0440524 | Zbl 0312.54045
[16] G. Jungck: On a fixed point theorem of Fisher and Sessa. Internat. J. Math. Sci. 13 (1990), 497–500. DOI 10.1155/S0161171290000710 | MR 1068012 | Zbl 0705.54034
[17] B. Y. Li: Fixed point theorems of nonexpansive mappings in convex metric spaces. Appl. Math. Mech. (English Ed.) 10 (1989), 183–188. DOI 10.1007/BF02014826
[18] P. R. Meyers: A converse to Banach’s contraction theorem. J. Res. Nat. Bur. Standards, Sect. B 71 (1967), 73–76. MR 0221469 | Zbl 0161.19803
[19] R. N. Mukherjee and V. Verma: A note on a fixed point theorem of Greguš. Math. Japon. 33 (1988), 745–749. MR 0972387
[20] P. Omari, G. Villari and F. Zanolin: A survey of recent applications of fixed point theory to periodic solutions of the Lienard equations, Fixed point theory and its applications. (Berkley, CA 1986), 171–178, Contemp. Math. 72, Amer. Math. Soc., Providence, RI, 1988. MR 0956489
[21] B. E. Rhoades: A generalization of a fixed point theorem of Bogin. Math. Sem. Notes, Kobe Univ. 6 (1978), 1–7. MR 0500749 | Zbl 0387.47040
[22] B. E. Rhoades: Some applications of contractive type mappings. Math. Sem. Notes, Kobe Univ. 5 (1977), 137–139. MR 0467716 | Zbl 0362.54044
[23] Md. Shahabuddin: Study of applications of Banach’s fixed point theorem. Chittagong Univ. Stud., Part II Sci. 11 (1987), 85–91. MR 0981206
[24] A. Weiczorek: Applications of fixed point theorems in game theory and mathematical economics (Polish). Wiadom. Mat. 28 (1988), 25–34. MR 0986059
Partner of
EuDML logo