Previous |  Up |  Next

Article

Keywords:
quasi-differential operators; regular; singular; bounded and square integrable solutions
Summary:
This paper is concerned with square integrable quasi-derivatives for any solution of a general quasi-differential equation of $n$th order with complex coefficients $M[y] - \lambda wy = wf (t, y^{[0]}, \ldots ,y^{[n-1]})$, $t\in [a,b)$ provided that all $r$th quasi-derivatives of solutions of $M[y] - \lambda w y = 0$ and all solutions of its normal adjoint $M^+[z] - \bar{\lambda } w z = 0$ are in $L^2_w (a,b)$ and under suitable conditions on the function $f$.
References:
[1] J.S. Bradley: Comparison theorems for the square integrability of solutions of $(r(t)y^{\prime })^{\prime } + q(t) y = f(t,y)$. Glasgow Math., Soc. 13 (1972), 75–79. DOI 10.1017/S0017089500001415 | MR 0313579 | Zbl 0246.34029
[2] D.E. Edmunds and W.D. Evans: Spectral Theory and Differential Operators (Oxford University) Press. 1987. MR 0929030
[3] W.N. Everitt and D. Race: Some remarks on linear ordinary quasi-differential expressions. Proc. London Math. Soc. (3) 54 (1987), 300–320. MR 0872809
[4] R.C. Gilbert: Simplicity of linear ordinary differential operators. Journal of Differential Equations 11 (1972), 672–681. DOI 10.1016/0022-0396(72)90074-5 | MR 0301564 | Zbl 0222.34058
[5] S. Goldberg: Unbounded Linear Operators. McGraw. Hill, New York, 1966. MR 0200692 | Zbl 0148.12501
[6] H.E. Gollwitzer: A note on functional inequality. Proc. Amer. Math. Soc. 23 (1969), 642–647. DOI 10.1090/S0002-9939-1969-0247016-9 | MR 0247016
[7] M.R. Mohana Rao: Ordinary Differential Equations. (Theory and Applications); First Published in the United Kingdom in 1989 by Edward Arnold (Publishers) Limited, London.
[8] M.N. Naimark: Linear Differential Operators. (G.I.T.T.L., Moscow, 1954), Ungar, New York, Vol. I (1967), Vol. II (1968). Zbl 0227.34020
[9] Sobhy El-sayed Ibrahim: Problems associated with differential operators. Ph.D. thesis (1989), Faculty of Sciences, Department of Mathematics, Benha University, Egypt.
[10] Sobhy El-sayed Ibrahim: Boundedness for solutions of general ordinary quasi-differential equations. Journal of the Egyptian Mathematical Society 2 (1994), 33–44. MR 1319065 | Zbl 0818.34019
[11] Sobhy El-sayed Ibrahim: The spectra of well-posed operators. Proc. Royal Soc. of Edinburgh 124A (1995), 1331–1348. MR 1363006
[12] D. Willett: Nonlinear vector integral equations as contraction mappings. Arch. Rational Mech. Anal. 15 (1964), 79–86. DOI 10.1007/BF00257405 | MR 0159200 | Zbl 0161.31902
[13] D. Willett and J.S.W. Wong: On the discrete analogues of some generalizations of Gronwall’s inequality. Monatsh. Math. 69 (1965), 362–367 MR 32 $\ne $ 2644. DOI 10.1007/BF01297622 | MR 0185175
[14] J.S.W. Wong: Square integrable solutions of perturbed linear differential equations. Proc. Royal Society of Edinburgh 73A, 16 (1974/75), 251–254. MR 0470314
[15] A. Zettl: Square integrable solutions of $Ly = f(t,y)$. Proceedings of the American Mathematical Society 26 (1970), 635–639. MR 0267213 | Zbl 0214.09105
[16] A. Zettl: Perturbation of the limit circle case. Quart. J. Math., Oxford (3) 26 (1975), 355–360. DOI 10.1093/qmath/26.1.355 | MR 0470315 | Zbl 0325.34022
[17] A. Zettl: Formally self-adjoint quasi-differential operators. Rocky Mountain Journal of Mathematics (3) 5 (1975), 453–474. DOI 10.1216/RMJ-1975-5-3-453 | MR 0379976
Partner of
EuDML logo